Seismically-induced soft-sediment deformation structures associated with the Magallanes–Fagnano Fault System (Isla Grande de Tierra del Fuego, Argentina)

[1]  P. Alvarado,et al.  Neotectonics and seismicity in southern Patagonia , 2016 .

[2]  M. Moretti,et al.  Seismites from a well core of palustrine deposits as a tool for reconstructing the palaeoseismic history of a fault , 2015 .

[3]  J. Galindo‐Zaldívar,et al.  The last major earthquakes along the Magallanes–Fagnano fault system recorded by disturbed trees (Tierra del Fuego, South America) , 2014 .

[4]  Q. Hua,et al.  SHCal13 Southern Hemisphere Calibration, 0–50,000 Years cal BP , 2013, Radiocarbon.

[5]  V. Rinaldi,et al.  Paleoseismicity and seismic hazard in southern Patagonia (Argentina-Chile; 50°–55°S) and the role of the Magallanes-Fagnano transform fault , 2012, Natural Hazards.

[6]  G. Owen,et al.  Recognising triggers for soft-sediment deformation: Current understanding and future directions ☆ , 2011 .

[7]  A. Ronchi,et al.  Liquefaction features interpreted as seismites in the Pleistocene fluvio-lacustrine deposits of the Neuquén Basin (Northern Patagonia) , 2011 .

[8]  M. Velez,et al.  Holocene soft-sediment deformation of the Santa Fe–Sopetrán Basin, northern Colombian Andes: Evidence for pre-Hispanic seismic activity? , 2011 .

[9]  D. Kietzmann,et al.  Earthquake-induced soft-sediment deformation structures in Upper Jurassic open-marine microbialites (Neuquén Basin, Argentina) , 2011 .

[10]  J. Rabassa,et al.  Chapter 51 - Pleistocene Glaciations in Southern Patagonia and Tierra del Fuego , 2011 .

[11]  M. Seppälä,et al.  Glacial geomorphology of the Pleistocene Lake Fagnano ice lobe, Tierra del Fuego, southern South America. , 2009 .

[12]  J. Rabassa,et al.  Late Cenozoic glaciations in Patagonia and Tierra del Fuego: an updated review , 2011 .

[13]  A. Cisternas,et al.  Sismos Históricos y Recientes en Magallanes. Historical and Recent Earthquakes in Magallanes. , 2008 .

[14]  A. Cisternas,et al.  SISMOS HISTÓRICOS Y RECIENTES EN MAGALLANES , 2008 .

[15]  G. Owen,et al.  Determining the origin of soft‐sediment deformation structures: a case study from Upper Carboniferous delta deposits in south‐west Wales, UK , 2008 .

[16]  C. Stern Holocene tephrochronology record of large explosive eruptions in the southernmost Patagonian Andes , 2008 .

[17]  L. Dimieri,et al.  Control en la magnitud de desplazamiento de rumbo del Sistema Transformante Fagnano, Tierra del Fuego, Argentina , 2008 .

[18]  N. Waldmann Late quaternary environmental changes in lago Fagnano, Tierra del Fuego (54°S): reconstructing sedimentary processes, natural hazards and paleoclimate , 2008 .

[19]  A. V. Loon,et al.  Lateral variability of ancient seismites related to differences in sedimentary facies (the synrift Escucha Formation, mid-Cretaceous, eastern Spain) , 2007 .

[20]  S. Greb,et al.  Soft-sediment deformation produced by tides in a meizoseismic area, Turnagain Arm, Alaska , 2007 .

[21]  L. Sabato,et al.  Recognition of trigger mechanisms for soft-sediment deformation in the Pleistocene lacustrine deposits of the SantʻArcangelo Basin (Southern Italy): Seismic shock vs. overloading , 2007 .

[22]  A. Jain,et al.  Liquefaction and fluidization of lacustrine deposits from Lahaul-Spiti and Ladakh Himalaya: Geological evidences of paleoseismicity along active fault zone , 2007 .

[23]  D. P. Schwartz,et al.  Paleoseismic observations of an onshore transform boundary: the Magallanes-Fagnano fault, Tierra del Fuego Argentina , 2006 .

[24]  Fiore D. Suter,et al.  Soft-sediment deformation in a tectonically active area: The Plio-Pleistocene Zarzal Formation in the Cauca Valley (Western Colombia) , 2006 .

[25]  A. Michetti,et al.  Future trends in paleoseismology: Integrated study of the seismic landscape as a vital tool in seismic hazard analyses , 2005 .

[26]  H. Tavera,et al.  Soil liquefaction during the Arequipa Mw 8.4, June 23, 2001 earthquake, southern coastal Peru , 2005 .

[27]  M. Menichetti,et al.  Magallanes‐Fagnano continental transform fault (Tierra del Fuego, southernmost South America) , 2003 .

[28]  M. Bevis,et al.  Geodetic determination of relative plate motion and crustal deformation across the Scotia‐South America plate boundary in eastern Tierra del Fuego , 2003 .

[29]  G. Owen Load structures: gravity-driven sediment mobilization in the shallow subsurface , 2003, Geological Society, London, Special Publications.

[30]  N. Barstow,et al.  Paleoliquefaction study of the Clarendon Linden fault system, western New York State , 2002 .

[31]  Matías C. Ghiglione Diques clásticos asociados a deformación transcurrente en depósitos sinorogénicos del Mioceno inferior de la Cuenca Austral , 2002 .

[32]  J. Delgado,et al.  Liquefaction and fluidization structures in Messinian storm deposits (Bajo Segura Basin, Betic Cordillera, southern Spain) , 2002 .

[33]  R. Wheeler Distinguishing seismic from nonseismic soft-sediment structures; criteria from seismic-hazard analysis , 2002 .

[34]  J. Hormaechea,et al.  Researchers target a continental transform fault in Tierra del Fuego , 2002 .

[35]  E. Olivero,et al.  A review of the geology of the Argentinian Fuegian Andes , 2001 .

[36]  N. Walsh,et al.  Asymmetrical soft-sediment deformation structures triggered by rapid sedimentation in turbiditic deposits (Late Miocene, Guadix Basin, southern Spain) , 2001 .

[37]  J. Calvo,et al.  Soft-sediment deformation structures interpreted as seismites in lacustrine sediments of the Prebetic Zone, SE Spain, and their potential use as indicators of earthquake magnitudes during the Late Miocene , 2000 .

[38]  D. Rossetti,et al.  Deciphering the sedimentological imprint of paleoseismic events: an example from the Aptian Codó Formation, northern Brazil , 2000 .

[39]  M. Moretti Soft-sediment deformation structures interpreted as seismites in middle-late Pleistocene aeolian deposits (Apulian foreland, southern Italy) , 2000 .

[40]  D. Rossetti Soft‐sediment deformation structures in late Albian to Cenomanian deposits, São Luís Basin, northern Brazil: evidence for palaeoseismicity , 1999 .

[41]  J. Canas,et al.  Modelling seismites with a digital shaking table , 1999 .

[42]  A. Estevez,et al.  Structures sédimentaires de déformation interprétées comme séismites clans le quaternaire du bassin du bas segura (cordillère bétique orientale) , 1999 .

[43]  S. F. Obermeier Liquefaction evidence for strong earthquakes of Holocene and latest Pleistocene ages in the states of Indiana and Illinois, USA , 1998 .

[44]  Moretti,et al.  Soft‐sediment deformation structures induced by cyclic stress of storm waves in tempestites (Miocene, Guadalquivir Basin, Spain) , 1998 .

[45]  J. Naranjo,et al.  Holocene explosive activity of Hudson Volcano, southern Andes , 1998 .

[46]  R. Bambach,et al.  Late Middle to Late Ordovician seismites of Kentucky, southwest Ohio and Virginia: Sedimentary recorders of earthquakes in the Appalachian basin , 1997 .

[47]  J. Rabassa,et al.  Pleistocene glaciolacustrine sedimentation at Lago Fagnano, Andes of Tierra Del Fuego, Southernmost South America , 1997 .

[48]  G. Owen Experimental soft‐sediment deformation: structures formed by the liquefaction of unconsolidated sands and some ancient examples , 1996 .

[49]  Eric C. Pond,et al.  Paleoliquefaction evidence for a strong Holocene earthquake in south-central Indiana , 1995 .

[50]  K. Klepeis The Magallanes and Deseado fault zones: Major segments of the South American‐Scotia transform plate boundary in southernmost South America, Tierra del Fuego , 1994 .

[51]  A. Maltman The Geological deformation of sediments , 1994 .

[52]  P. Reimer,et al.  Extended 14C Data Base and Revised CALIB 3.0 14C Age Calibration Program , 1993, Radiocarbon.

[53]  A. V. Loon,et al.  Chapter 3 The Recognition of Soft-Sediment Deformations as Early-Diagenetic Features – a Literature Review , 1992 .

[54]  F. Audemard,et al.  Survey of liquefaction structures induced by recent moderate earthquakes , 1991 .

[55]  E. Vittori,et al.  Palaeoseismology: review of the state-of-the-art , 1991 .

[56]  C. Stern Mid-Holocene tephra on Tierra del Fuego (54°S) derived from the Hudson volcano (46°S): evidence for a large explosive eruption , 1991 .

[57]  I. Dalziel,et al.  Tectonic denudation of the Darwin metamorphic core complex in the Andes of Tierra del Fuego, southernmost Chile: Implications for Cordilleran orogenesis , 1989 .

[58]  Mateo B. Martinić Actividad volcanica historica en la Region de Magallanes , 1988 .

[59]  A. V. Loon,et al.  Problems and progress in the research on soft-sediment deformations , 1987 .

[60]  G. Owen Deformation processes in unconsolidated sands , 1987, Geological Society, London, Special Publications.

[61]  N. Eyles,et al.  Significance of hummocky and swaley cross-stratification in late Pleistocene lacustrine sediments of the Ontario basin, Canada , 1986 .

[62]  G. Postma Water Escape Structures in the Context of a Depositional Model of a Mass Flow Dominated Conglomeratic Fan‐Delta (Abrioja Formation, Pliocene, Almeria Basin, SE Spain) , 1983 .

[63]  J. R. Allen Sedimentary structures, their character and physical basis , 1982 .

[64]  J. R. Goodstein,et al.  Seismology microfiche publications from the Caltech archives , 1980 .

[65]  P. L. Boer Convolute lamination in modern sands of the estuary of the Oosterschelde, the Netherlands, formed as the result of entrapped air* , 1979 .

[66]  J. R. Allen The possible mechanics of convolute lamination in graded sand beds , 1977, Journal of the Geological Society.

[67]  D. Lowe Water escape structures in coarse-grained sediments , 1975 .

[68]  D. Lowe,et al.  The Characteristics and Origins of Dish and Pillar Structures , 1974 .

[69]  C. Lomnitz Major earthquakes and tsunamis in Chile during the period 1535 to 1955 , 1970 .

[70]  S. Dżułyński,et al.  On the deformational structures in systems with reversed density gradients , 1970 .

[71]  H. G. Davies CONVOLUTE LAMINATION AND OTHER STRUCTURES FROM THE LOWER COAL MEASURES OF YORKSHIRE , 1965 .

[72]  E. Williams Intra-Stratal Flow and Convolute Folding , 1960, Geological Magazine.

[73]  J. Rich Flow Markings, Groovings, and Intra-Stratal Crumplings as Criteria for Recognition of Slope Deposits, with Illustrations from Silurian Rocks of Wales , 1950 .