Dynamics at Infinity of a cubic Chua's System

We use the Poincare compactification for a polynomial vector field in ℝ3 to study the dynamics near and at infinity of the classical Chua's system with a cubic nonlinearity. We give a complete description of the phase portrait of this system at infinity, which is identified with the sphere 𝕊2 in ℝ3 after compactification, and perform a numerical study on how the solutions reach infinity, depending on the parameter values. With this global study we intend to give a contribution in the understanding of this well known and extensively studied complex three-dimensional dynamical system.