Data assimilation for state and parameter estimation: application to morphodynamic modelling

Data assimilation is predominantly used for state estimation, combining observational data with model predictions to produce an updated model state that most accurately approximates the true system state whilst keeping the model parameters fixed. This updated model state is then used to initiate the next model forecast. Even with perfect initial data, inaccurate model parameters will lead to the growth of prediction errors. To generate reliable forecasts, we need good estimates of both the current system state and the model parameters. This article presents research into data assimilation methods for morphodynamic model state and parameter estimation. First, we focus on state estimation and describe implementation of a three-dimensional variational (3D-Var) data assimilation scheme in a simple 2D morphodynamic model of Morecambe Bay, UK. The assimilation of observations of bathymetry derived from synthetic aperture radar (SAR) satellite imagery and a ship-borne survey is shown to significantly improve the predictive capability of the model over a 2-year run. Here, the model parameters are set by manual calibration; this is laborious and is found to produce different parameter values depending on the type and coverage of the validation dataset. The second part of this article considers the problem of model parameter estimation in more detail. We explain how, by employing the technique of state augmentation, it is possible to use data assimilation to estimate uncertain model parameters concurrently with the model state. This approach removes inefficiencies associated with manual calibration and enables more effective use of observational data. We outline the development of a novel hybrid sequential 3D-Var data assimilation algorithm for joint state-parameter estimation and demonstrate its efficacy using an idealised 1D sediment transport model. The results of this study are extremely positive and suggest that there is great potential for the use of data assimilation-based state-parameter estimation in coastal morphodynamic modelling. Copyright © 2012 Royal Meteorological Society

[1]  Richard Soulsby,et al.  Evaluating the performance of morphological models , 2004 .

[2]  Nancy Nichols,et al.  A singular vector perspective of 4D‐Var: Filtering and interpolation , 2005 .

[3]  Philippe Courtier,et al.  Unified Notation for Data Assimilation : Operational, Sequential and Variational , 1997 .

[4]  G. Stelling,et al.  Development and validation of a three-dimensional morphological model , 2004 .

[5]  R. Soulsby Dynamics of marine sands , 1997 .

[6]  B. Khattatov,et al.  Data assimilation : making sense of observations , 2010 .

[7]  Keith Beven,et al.  The future of distributed models: model calibration and uncertainty prediction. , 1992 .

[8]  Richard F. Katz,et al.  A semi‐Lagrangian Crank‐Nicolson algorithm for the numerical solution of advection‐diffusion problems , 2006 .

[9]  P. L. Houtekamer,et al.  Ensemble Kalman filtering , 2005 .

[10]  M. Ghil,et al.  Data assimilation in meteorology and oceanography , 1991 .

[11]  James D. Brown,et al.  Modeling storm surge flooding of an urban area with particular reference to modeling uncertainties: A case study of Canvey Island, United Kingdom , 2007 .

[12]  Kevin Horsburgh,et al.  Data assimilation for morphodynamic prediction and predictability , 2009 .

[13]  Nancy Nichols,et al.  Mathematical Concepts of Data Assimilation , 2010 .

[14]  P. Houtekamer,et al.  Data Assimilation Using an Ensemble Kalman Filter Technique , 1998 .

[15]  James A. Hansen,et al.  On stochastic parameter estimation using data assimilation , 2007 .

[16]  D. C. Hilla,et al.  Derivation of sediment resuspension rates from acoustic backscatter time-series in tidal waters , 2002 .

[17]  J. A. Smith,et al.  A Sensitivity Analysis of the Waterline Method of Constructing a Digital Elevation Model for Intertidal Areas in ERS SAR scene of Eastern England , 2001 .

[18]  Christopher B. Field,et al.  Coastal Systems and Low-Lying Areas , 2014 .

[19]  Martin Ehrendorfer,et al.  A review of issues in ensemble-based Kalman filtering , 2007 .

[20]  Ionel Michael Navon,et al.  Practical and theoretical aspects of adjoint parameter estimation and identifiability in meteorology and oceanography , 1998 .

[21]  Guus S. Stelling,et al.  Inundation of a Dutch river polder, sensitivity analysis of a physically based inundation model using historic data , 2003 .

[22]  Eugenia Kalnay,et al.  Atmospheric Modeling, Data Assimilation and Predictability , 2002 .

[23]  B. G. Ruessink A Bayesian estimation of parameter-induced uncertainty in a nearshore alongshore current model , 2006 .

[24]  B. G. Ruessink,et al.  Calibration of nearshore process models—application of a hybrid genetic algorithm , 2005 .

[25]  Suzanne J.M.H. Hulscher,et al.  Use of a genetic algorithm to improve predictions of alternate bar dynamics , 2003 .

[26]  Philip E. Gill,et al.  Practical optimization , 1981 .

[27]  Nancy Nichols,et al.  Adjoint Methods in Data Assimilation for Estimating Model Error , 2000 .

[28]  Ian G. Enting,et al.  Using the Kalman filter for parameter estimation in biogeochemical models , 2008 .

[29]  R. Daley Atmospheric Data Analysis , 1991 .

[30]  A. Lorenc A Global Three-Dimensional Multivariate Statistical Interpolation Scheme , 1981 .

[31]  J. M. Lewis,et al.  Dynamic Data Assimilation: A Least Squares Approach , 2006 .

[32]  J. Palutikof,et al.  Climate change 2007 : impacts, adaptation and vulnerability , 2001 .

[33]  R. Bannister A review of forecast error covariance statistics in atmospheric variational data assimilation. II: Modelling the forecast error covariance statistics , 2008 .

[34]  Clive D Rodgers,et al.  Inverse Methods for Atmospheric Sounding: Theory and Practice , 2000 .

[35]  Ross N. Bannister,et al.  A review of forecast error covariance statistics in atmospheric variational data assimilation. I: Characteristics and measurements of forecast error covariances , 2008 .

[36]  Wen Long,et al.  A numerical scheme for morphological bed level calculations , 2008 .

[37]  D. Prandle,et al.  Derivation of sediment resuspension rates from acoustic backscatter time-series in tidal waters , 2003 .

[38]  Pradeep Garg,et al.  Morphodynamic Modelling of Intertidal Sediment Transport in Morecambe Bay , 2001 .

[39]  Nancy Nichols,et al.  Variational data assimilation for parameter estimation: application to a simple morphodynamic model , 2009 .

[40]  Nancy Nichols,et al.  Assimilation of data into an ocean model with systematic errors near the equator , 2004 .

[41]  Tania Ruth Scott,et al.  Data assimilation for a coastal area morphodynamic model: Morecambe Bay , 2007 .

[42]  D. P. DEE,et al.  Bias and data assimilation , 2005 .

[43]  J. A. Smith,et al.  Measurement of Recent Intertidal Sediment Transport in Morecambe Bay using the Waterline Method , 1999 .

[44]  B. G. Ruessink,et al.  Predictive uncertainty of a nearshore bed evolution model , 2005 .

[45]  Nancy Nichols,et al.  Treatment of systematic errors in sequential data assimilation , 1999 .

[46]  Christine Johnson,et al.  Information Content of Observations in Variational Data Assimilation , 2003 .

[47]  A. Jazwinski Stochastic Processes and Filtering Theory , 1970 .

[48]  Nancy Nichols,et al.  Data assimilation for morphodynamic model parameter estimation: a hybrid approach , 2009 .

[49]  Nancy Nichols,et al.  A hybrid data assimilation scheme for model parameter estimation: Application to morphodynamic modelling , 2011 .

[50]  L. Rijn Principles of sediment transport in rivers, estuaries and coastal seas , 1993 .

[51]  Nancy Nichols,et al.  Integration of a 3D Variational data assimilation scheme with a coastal area morphodynamic model of Morecambe Bay , 2012 .