A systematic method for integrating product attributes within molecular synthesis

The complete and efficient solution to the enumeration of candidate compounds and mixtures that meet specified consumer attributes is often a difficult mathematical programming problem. Most approaches to this problem involve the solution of a mixed integer non-linear program (MINLP) which may achieve only local optima solutions. In this paper a proof-of-concept study is presented to show that empirical models can be used in a reverse problem formulation to ensure a complete set of candidate compounds and mixtures are found subject to the predictive power of the model. The method utilizes a transformation of consumer attributes to properties described by the group contribution method and solves the reverse problem formulation using the property clustering technique. A case study in refrigerant design is used to highlight the method.

[1]  Pedro M. Saraiva,et al.  Chemical product engineering: An emerging paradigm within chemical engineering , 2006 .

[2]  Mahmoud M. El-Halwagi,et al.  Algebraic Techniques for Property Integration via Componentless Design , 2004 .

[3]  Mahmoud M. El-Halwagi,et al.  Simultaneous process and molecular design—A property based approach , 2007 .

[4]  Guangming Chen,et al.  Cycle performance study on R32/R125/R161 as an alternative refrigerant to R407C , 2007 .

[5]  Sofia Calero,et al.  Description of alternative refrigerants with BACKONE equations , 1998 .

[6]  Mahmoud M. El-Halwagi,et al.  Targeting optimum resource allocation using reverse problem formulations and property clustering techniques , 2005, Comput. Chem. Eng..

[7]  R. Gani,et al.  New group contribution method for estimating properties of pure compounds , 1994 .

[8]  G. Belle Statistical rules of thumb , 2002 .

[9]  Heriberto Cabezas,et al.  Designing sustainable processes with simulation: the waste reduction (WAR) algorithm , 1999 .

[10]  K. Joback,et al.  ESTIMATION OF PURE-COMPONENT PROPERTIES FROM GROUP-CONTRIBUTIONS , 1987 .

[11]  P. Mizsey,et al.  Flammability of gas mixtures. Part 2: influence of inert gases. , 2005, Journal of hazardous materials.

[12]  Zhao Haibo,et al.  Experimental study of the inert effect of R134a and R227ea on explosion limits of the flammable refrigerants , 2004 .

[13]  Mahmoud M. El-Halwagi,et al.  Component-less design of recovery and allocation systems: a functionality-based clustering approach , 2000 .

[14]  Nikolaos V. Sahinidis,et al.  Design of alternative refrigerants via global optimization , 2003 .

[15]  M. Wendland,et al.  Screening of pure fluids as alternative refrigerants , 2006 .

[16]  Nouna Kettaneh-Wold,et al.  Analysis of mixture data with partial least squares , 1992 .

[17]  J. Cornell,et al.  Experiments with Mixtures , 1992 .

[18]  Ying Zhang,et al.  Testing of the mixing refrigerants HFC152a/HFC125 in domestic refrigerator , 2005 .

[19]  Rafiqul Gani,et al.  Chemical product design: challenges and opportunities , 2004, Comput. Chem. Eng..

[20]  S. Kondo,et al.  Extended Le Chatelier's formula and nitrogen dilution effect on the flammability limits , 2006 .

[21]  Stanley I. Sandler,et al.  Use of ab initio quantum mechanics calculations in group contribution methods. 1. Theory and the basis for group identifications , 1991 .

[22]  Sten Bay Jørgensen,et al.  A novel framework for simultaneous separation process and product design , 2004 .

[23]  Stanley I. Sandler,et al.  Proximity effects on the predictions of the UNIFAC model: I. Ethers , 1989 .

[24]  Volkmar Schröder,et al.  Flammability of gas mixtures. Part 1: fire potential. , 2005, Journal of hazardous materials.

[25]  David R. Cox,et al.  A note on polynomial response functions for mixtures , 1971 .

[26]  Dominique Richon,et al.  Measurement of physical properties of refrigerant mixtures. Determination of phase diagrams , 2006 .

[27]  Luke E. K. Achenie,et al.  On the design of environmentally benign refrigerant mixtures : a mathematical programming approach , 1997 .

[28]  Mario R. Eden,et al.  Efficient Visual Mixture Design of Experiments using Property Clustering Techniques , 2009 .

[29]  Edward L Cussler,et al.  Chemical product design , 2001 .

[30]  Kenichi Fujii,et al.  Vapor-liquid equilibrium measurements and correlations for the binary mixture of difluoromethane + isobutane and the ternary mixture of propane + isobutane + difluoromethane , 2007 .

[31]  Jorge A. Marrero,et al.  Group-contribution based estimation of pure component properties , 2001 .

[32]  Henry V. Kehiaian,et al.  Group contribution methods for liquid mixtures: A critical review , 1983 .

[33]  Mario R. Eden,et al.  A novel algorithm for molecular synthesis using enhanced property operators , 2009, Comput. Chem. Eng..

[34]  T. Rachidi,et al.  New fluids as substitute refrigerants for R12 , 1997 .

[35]  J. Steven Brown,et al.  Predicting performance of refrigerants using the Peng–Robinson Equation of State , 2007 .

[36]  Johann Fischer,et al.  Backone family of equations of state: 1. Nonpolar and polar pure fluids , 1996 .