Errors of Powered Swing-By in the Restricted Three-Body Problem

The powered swing-by maneuver is described by the parameters that define the orbit of the spacecraft and the ones that define the impulse applied. In this case the impulse is applied in the periaps...

[1]  Alessandra F. S. Ferreira,et al.  Effects of the eccentricity of the primaries in powered Swing-By maneuvers , 2017 .

[2]  James M. Longuski,et al.  Multiple-satellite-aided capture trajectories at Jupiter using the Laplace resonance , 2011 .

[3]  Alessandra F. S. Ferreira,et al.  A numerical study of powered Swing-Bys around the Moon , 2015 .

[4]  A. D. Ruiter,et al.  Powered swing-by in the elliptic restricted three-body problem , 2018, Monthly Notices of the Royal Astronomical Society.

[5]  A. Prado A comparison of the "patched-conics approach" and the restricted problem for swing-bys , 2006 .

[6]  Ryan P. Russell,et al.  Flybys in the planar, circular, restricted, three-body problem , 2012 .

[7]  A. Prado Close-Approach Trajectories in the Elliptic Restricted Problem , 1997 .

[8]  Alessandra F. S. Ferreira,et al.  Planar powered Swing-By maneuvers to brake a spacecraft , 2018 .

[9]  Lorenzo Casalino,et al.  Simple Strategy for Powered Swingby , 1997 .

[10]  J. Longuski,et al.  Low-Thrust Trajectories to Jupiter via Gravity Assists from Venus, Earth, and Mars , 2006 .

[11]  Andrea Carusi,et al.  Planetary close encounters: geometry of approach and post-encounter orbital parameters , 1990 .

[12]  Alessandra F. S. Ferreira,et al.  Analytical study of the swing-by maneuver in an elliptical system , 2018, Astrophysics and Space Science.

[13]  R. Broucke The celestial mechanics of gravity assist , 1988 .

[14]  Antonio F. B. A. Prado,et al.  Studying the errors in the estimation of the variation of energy by the “patched-conics” model in the three-dimensional swing-by , 2017 .

[15]  A. Prado,et al.  Study of the gravitational capture of a spacecraft by Jupiter , 2015 .

[16]  Alessandra F. S. Ferreira,et al.  A numerical mapping of energy gains in a powered Swing-By maneuver , 2017, Nonlinear Dynamics.

[17]  Lorenzo Casalino,et al.  Optimal Low-Thrust Escape Trajectories Using Gravity Assist , 1999 .

[18]  A. D. Ruiter,et al.  Energy analysis in the elliptic restricted three-body problem , 2018 .

[19]  G. Valsecchi,et al.  Conservation of the Tisserand parameter at close encounters of interplanetary objects with Jupiter , 1995 .

[20]  Giovanni B. Valsecchi,et al.  Outcomes of planetary close encounters: A systematic comparison of methodologies , 1988 .

[21]  Ryan P. Russell,et al.  Endgame Problem Part 1: V-Infinity-Leveraging Technique and the Leveraging Graph , 2010 .

[22]  Anastassios E. Petropoulos,et al.  Design and Optimization of Low-Thrust Trajectories with Gravity Assists , 2003 .

[23]  Shane D. Ross,et al.  Heteroclinic connections between periodic orbits and resonance transitions in celestial mechanics. , 2000, Chaos.

[24]  A. Prado,et al.  Sphere of influence and gravitational capture radius: a dynamical approach , 2008 .

[25]  Alessandra F. S. Ferreira,et al.  Analytical study of the powered Swing-By maneuver for elliptical systems and analysis of its efficiency , 2018, Astrophysics and Space Science.

[26]  Ryan P. Russell,et al.  Endgame Problem Part 2: Multibody Technique and the Tisserand-Poincare Graph , 2010 .

[27]  Yi Qi,et al.  Lunar flyby transfers between libration point orbits , 2017 .