Effects of ligand monolayers on catalytic nickel nanoparticles for synthesizing vertically aligned carbon nanofibers.

Vertically aligned carbon nanofibers (VACNFs) were synthesized using ligand-stabilized Ni nanoparticle (NP) catalysts and plasma-enhanced chemical vapor deposition. Using chemically synthesized Ni NPs enables facile preparation of VACNF arrays with monodisperse diameters below the size limit of thin film lithography. During pregrowth heating, the ligands catalytically convert into graphitic shells that prevent the catalyst NPs from agglomerating and coalescing, resulting in a monodisperse VACNF size distribution. In comparison, significant agglomeration occurs when the ligands are removed before VACNF growth, giving a broad distribution of VACNF sizes. The ligand shells are also promising for patterning the NPs and synthesizing complex VACNF arrays.

[1]  P. Rack,et al.  Reactive solid-state dewetting of Cu–Ni films on silicon , 2010 .

[2]  W. Tremel,et al.  Graphitically encapsulated cobalt nanocrystal assemblies. , 2010, Chemical communications.

[3]  J. B. Tracy,et al.  Size-dependent nanoscale kirkendall effect during the oxidation of nickel nanoparticles. , 2010, ACS nano.

[4]  C. Turner,et al.  The critical role of surfactants in the growth of cobalt nanoparticles. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[5]  J. B. Tracy,et al.  Nickel Phosphide Nanoparticles with Hollow, Solid, and Amorphous Structures , 2009 .

[6]  Jun Li,et al.  Novel dye-sensitized solar cell architecture using TiO2-coated vertically aligned carbon nanofiber arrays. , 2009, ACS applied materials & interfaces.

[7]  J. B. Tracy,et al.  Synthesis and structural and magnetic characterization of Ni(core)/NiO(shell) nanoparticles. , 2009, ACS nano.

[8]  G. Somorjai,et al.  Sum Frequency Generation and Catalytic Reaction Studies of the Removal of Organic Capping Agents from Pt Nanoparticles by UV−Ozone Treatment , 2009 .

[9]  I. Denysenko,et al.  Plasma heating effects in catalyzed growth of carbon nanofibres , 2009 .

[10]  Vincent M. Rotello,et al.  Applications of Nanoparticles in Biology , 2008 .

[11]  J. Liu,et al.  From Core/Shell Structured FePt/Fe3O4/MgO to Ferromagnetic FePt Nanoparticles , 2008 .

[12]  Kevin K. H. Chan,et al.  Size-selected Ni catalyst islands for single-walled carbon nanotube arrays , 2008 .

[13]  H. Winnischofer,et al.  Chemical synthesis and structural characterization of highly disordered N colloidal nanoparticles. , 2008, ACS nano.

[14]  T. Chiles,et al.  Carbon nanotube-mediated delivery of nucleic acids does not result in non-specific activation of B lymphocytes , 2007 .

[15]  Taeghwan Hyeon,et al.  Synthesis of monodisperse spherical nanocrystals. , 2007, Angewandte Chemie.

[16]  A. Lu,et al.  Magnetic nanoparticles: synthesis, protection, functionalization, and application. , 2007, Angewandte Chemie.

[17]  Dwight G Nishimura,et al.  FeCo/graphitic-shell nanocrystals as advanced magnetic-resonance-imaging and near-infrared agents , 2006, Nature materials.

[18]  Taeghwan Hyeon,et al.  Ni/NiO core/shell nanoparticles for selective binding and magnetic separation of histidine-tagged proteins. , 2006, Journal of the American Chemical Society.

[19]  A. Lu,et al.  Highly stable carbon-protected cobalt nanoparticles and graphite shells. , 2005, Chemical communications.

[20]  E. Snoeck,et al.  Multimillimetre-large superlattices of air-stable iron–cobalt nanoparticles , 2005, Nature materials.

[21]  M. Bawendi,et al.  Exchange biasing and magnetic properties of partially and fully oxidized colloidal cobalt nanoparticles , 2005 .

[22]  T. Hyeon,et al.  One-nanometer-scale size-controlled synthesis of monodisperse magnetic iron oxide nanoparticles. , 2005, Angewandte Chemie.

[23]  T. Hyeon,et al.  Monodisperse Nanoparticles of Ni and NiO: Synthesis, Characterization, Self‐Assembled Superlattices, and Catalytic Applications in the Suzuki Coupling Reaction , 2005 .

[24]  Michael L. Simpson,et al.  Vertically Aligned Carbon Nanofibers and Related Structures: Controlled Synthesis and Directed Assembly , 2005 .

[25]  T. Ichihashi,et al.  In situ observation of carbon-nanopillar tubulization process , 2004 .

[26]  M. Yin,et al.  Magnetic, electronic, and structural characterization of nonstoichiometric iron oxides at the nanoscale. , 2004, Journal of the American Chemical Society.

[27]  D. Hensley,et al.  Microarrays of Biomimetic Cells Formed by the Controlled Synthesis of Carbon Nanofiber Membranes , 2004 .

[28]  Sang Won Lee,et al.  Easy Synthesis and Magnetic Properties of Iron Oxide Nanoparticles , 2004 .

[29]  T. Ichihashi,et al.  In situ observation of carbon-nanopillar tubulization caused by liquidlike iron particles. , 2004, Physical review letters.

[30]  M. L. Simpson,et al.  Initial growth of vertically aligned carbon nanofibers , 2004 .

[31]  Hong Yang,et al.  Effects of surfactants and synthetic conditions on the sizes and self-assembly of monodisperse iron oxide nanoparticles , 2004 .

[32]  J. Nørskov,et al.  Atomic-scale imaging of carbon nanofibre growth , 2004, Nature.

[33]  Hao Zeng,et al.  Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles. , 2004, Journal of the American Chemical Society.

[34]  D. Austin,et al.  Fabrication and Characterization of Carbon Nanofiber-Based Vertically Integrated Schottky Barrier Junction Diodes , 2003 .

[35]  J. H. Whealton,et al.  Controlled alignment of carbon nanofibers in a large-scale synthesis process , 2002 .

[36]  A. Alivisatos,et al.  Synthesis of hcp-Co Nanodisks. , 2002, Journal of the American Chemical Society.

[37]  M. L. Simpson,et al.  Individually addressable vertically aligned carbon nanofiber-based electrochemical probes , 2002 .

[38]  Taeghwan Hyeon,et al.  Synthesis of highly crystalline and monodisperse maghemite nanocrystallites without a size-selection process. , 2001, Journal of the American Chemical Society.

[39]  John Robertson,et al.  Growth process conditions of vertically aligned carbon nanotubes using plasma enhanced chemical vapor deposition , 2001 .

[40]  M. L. Simpson,et al.  Shaping carbon nanostructures by controlling the synthesis process , 2001 .

[41]  J. Ding,et al.  Catalytic growth of carbon nanoballs with and without cobalt encapsulation , 2000 .

[42]  Vladimir I. Merkulov,et al.  Patterned growth of individual and multiple vertically aligned carbon nanofibers , 2000 .

[43]  R. Finke,et al.  A review of modern transition-metal nanoclusters: their synthesis, characterization, and applications in catalysis , 1999 .

[44]  Shouheng Sun,et al.  Synthesis of monodisperse cobalt nanocrystals and their assembly into magnetic superlattices (invited) , 1999 .

[45]  M. Kovalenko,et al.  Prospects of colloidal nanocrystals for electronic and optoelectronic applications. , 2010, Chemical reviews.

[46]  M. L. Simpson,et al.  Vertically aligned carbon nanofiber-based field emission electron sources with an integrated focusing electrode , 2004 .

[47]  M. Meyyappan,et al.  Large-Scale Fabrication of Carbon Nanotube Probe Tips for Atomic Force Microscopy Critical Dimension Imaging Applications , 2004 .