Gaussian process methods for estimating cortical maps

[1]  S. Levay,et al.  Ocular dominance columns and their development in layer IV of the cat's visual cortex: A quantitative study , 1978, The Journal of comparative neurology.

[2]  Brian Everitt,et al.  An Introduction to Latent Variable Models , 1984 .

[3]  G. Blasdel,et al.  Voltage-sensitive dyes reveal a modular organization in monkey striate cortex , 1986, Nature.

[4]  M. Cynader,et al.  Surface organization of orientation and direction selectivity in cat area 18 , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[5]  Amiram Grinvald,et al.  Iso-orientation domains in cat visual cortex are arranged in pinwheel-like patterns , 1991, Nature.

[6]  G. Blasdel,et al.  Orientation selectivity, preference, and continuity in monkey striate cortex , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[7]  Lawrence Sirovich,et al.  Management and Analysis of Large Scientific Datasets , 1992 .

[8]  Noel A Cressie,et al.  Statistics for Spatial Data. , 1992 .

[9]  T. Bonhoeffer,et al.  Optimal Smoothness of Orientation Preference Maps , 1994 .

[10]  Klaus Schulten,et al.  Models of Orientation and Ocular Dominance Columns in the Visual Cortex: A Critical Comparison , 1995, Neural Computation.

[11]  D. Fitzpatrick,et al.  A systematic map of direction preference in primary visual cortex , 1996, Nature.

[12]  Lawrence Sirovich,et al.  Separating spatially distributed response to stimulation from background. I. Optical imaging , 1997, Biological Cybernetics.

[13]  A. Grinvald,et al.  Spatial Relationships among Three Columnar Systems in Cat Area 17 , 1997, The Journal of Neuroscience.

[14]  F. Wolf,et al.  Spontaneous pinwheel annihilation during visual development , 1998, Nature.

[15]  D. Fitzpatrick,et al.  Unequal representation of cardinal and oblique contours in ferret visual cortex. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[16]  Nicholas V. Swindale,et al.  Orientation tuning curves: empirical description and estimation of parameters , 1998, Biological Cybernetics.

[17]  S. M. Williams,et al.  Maps of Central Visual Space in Ferret V1 and V2 Lack Matching Inputs from the Two Eyes , 1999, The Journal of Neuroscience.

[18]  A Shmuel,et al.  Coexistence of linear zones and pinwheels within orientation maps in cat visual cortex. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[19]  Christopher K. I. Williams,et al.  Using the Nyström Method to Speed Up Kernel Machines , 2000, NIPS.

[20]  E. Kaplan,et al.  A Principal Components-Based Method for the Detection of Neuronal Activity Maps: Application to Optical Imaging , 2000, NeuroImage.

[21]  K. Obermayer,et al.  Principal Component Analysis and Blind Separation of Sources for Optical Imaging of Intrinsic Signals , 2000, NeuroImage.

[22]  M. Stryker,et al.  Spatial Frequency Maps in Cat Visual Cortex , 2000, The Journal of Neuroscience.

[23]  L. Sirovich,et al.  An Optimization Approach to Signal Extraction from Noisy Multivariate Data , 2001, NeuroImage.

[24]  Dan Cornford,et al.  Online Approximations for Wind-Field Models , 2001, ICANN.

[25]  W H Bosking,et al.  Consistent mapping of orientation preference across irregular functional domains in ferret visual cortex , 2001, Visual Neuroscience.

[26]  Karl J. Friston,et al.  Bayesian Estimation of Dynamical Systems: An Application to fMRI , 2002, NeuroImage.

[27]  A. Sornborger,et al.  Spatiotemporal analysis of optical imaging data , 2003, NeuroImage.

[28]  Michael P. Stryker,et al.  New Paradigm for Optical Imaging Temporally Encoded Maps of Intrinsic Signal , 2003, Neuron.

[29]  Michael I. Jordan,et al.  Kernel independent component analysis , 2003 .

[30]  Andrew McCallum,et al.  Dynamic conditional random fields: factorized probabilistic models for labeling and segmenting sequence data , 2004, J. Mach. Learn. Res..

[31]  E. L. Schwartz,et al.  Cat and monkey cortical columnar patterns modeled by bandpass-filtered 2D white noise , 1990, Biological Cybernetics.

[32]  L. Sirovich,et al.  The organization of orientation and spatial frequency in primary visual cortex. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[33]  Neil D. Lawrence,et al.  Learning to learn with the informative vector machine , 2004, ICML.

[34]  M. Opper,et al.  inverse problems: some new approaches , 2022 .

[35]  M. A. Carreira-Perpiñán,et al.  Influence of lateral connections on the structure of cortical maps. , 2004, Journal of neurophysiology.

[36]  D. Chklovskii,et al.  Maps in the brain: what can we learn from them? , 2004, Annual review of neuroscience.

[37]  Christopher K. I. Williams,et al.  Using the Equivalent Kernel to Understand Gaussian Process Regression , 2004, NIPS.

[38]  F. Tong,et al.  Decoding the visual and subjective contents of the human brain , 2005, Nature Neuroscience.

[39]  L. Sirovich,et al.  Extraction of the average and differential dynamical response in stimulus-locked experimental data , 2005, Journal of Neuroscience Methods.

[40]  Sooyoung Chung,et al.  Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex , 2005, Nature.

[41]  E. Schwartz,et al.  Physical limits to spatial resolution of optical recording: clarifying the spatial structure of cortical hypercolumns. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[42]  Karl J. Friston,et al.  Bayesian fMRI time series analysis with spatial priors , 2005, NeuroImage.

[43]  Yee Whye Teh,et al.  Semiparametric latent factor models , 2005, AISTATS.

[44]  Seong-Gi Kim,et al.  Mapping Iso-Orientation Columns by Contrast Agent-Enhanced Functional Magnetic Resonance Imaging: Reproducibility, Specificity, and Evaluation by Optical Imaging of Intrinsic Signal , 2006, The Journal of Neuroscience.

[45]  G. Rees,et al.  Neuroimaging: Decoding mental states from brain activity in humans , 2006, Nature Reviews Neuroscience.

[46]  Donald Robertson,et al.  Maximum likelihood factor analysis with rank-deficient sample covariance matrices , 2007 .

[47]  Andrew McCallum,et al.  Piecewise pseudolikelihood for efficient training of conditional random fields , 2007, ICML '07.

[48]  G. Goodhill Contributions of Theoretical Modeling to the Understanding of Neural Map Development , 2007, Neuron.

[49]  Wolfram Burgard,et al.  Most likely heteroscedastic Gaussian process regression , 2007, ICML '07.

[50]  Essa Yacoub,et al.  High-field fMRI unveils orientation columns in humans , 2008, Proceedings of the National Academy of Sciences.

[51]  Stephen D. Van Hooser,et al.  Experience with moving visual stimuli drives the early development of cortical direction selectivity , 2008, Nature.

[52]  M. Carandini,et al.  Neuronal Selectivity and Local Map Structure in Visual Cortex , 2008, Neuron.

[53]  F. Wolf,et al.  Self-organization and the selection of pinwheel density in visual cortical development , 2008, 0801.3651.

[54]  N. Cressie,et al.  Fixed rank kriging for very large spatial data sets , 2008 .

[55]  John P. Cunningham,et al.  Gaussian-process factor analysis for low-dimensional single-trial analysis of neural population activity , 2008, NIPS.

[56]  Ari Rosenberg,et al.  Models and measurements of functional maps in V1. , 2008, Journal of neurophysiology.

[57]  Huajin Tang,et al.  Natural scene statistics and the structure of orientation maps in the visual cortex , 2009, NeuroImage.

[58]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[59]  Matthias W. Seeger,et al.  Convex variational Bayesian inference for large scale generalized linear models , 2009, ICML '09.

[60]  Matthias Bethge,et al.  Bayesian estimation of orientation preference maps , 2009, NIPS.

[61]  P. Kara,et al.  A micro-architecture for binocular disparity and ocular dominance in visual cortex , 2009, Nature.

[62]  Karl J. Friston,et al.  Topological FDR for neuroimaging , 2010, NeuroImage.

[63]  Kamiar Rahnama Rad,et al.  Efficient, adaptive estimation of two-dimensional firing rate surfaces via Gaussian process methods , 2010, Network.