Dynamics of a host-pathogen system on a bounded spatial domain

We study a host-pathogen system in a bounded spatial habitat where the environment is closed. Extinction and persistence of the disease are investigated by appealing to theories of monotone dynamical systems and uniform persistence. We also carry out a bifurcation analysis for steady state solutions, and the results suggest that a backward bifurcation may occur when the parameters in the system are spatially dependent.

[1]  Roy M. Anderson,et al.  The Population Dynamics of Microparasites and Their Invertebrate Hosts , 1981 .

[2]  Yihong Du,et al.  A diffusive predator–prey model with a protection zone☆ , 2006 .

[3]  Xingfu Zou,et al.  Threshold dynamics of an infective disease model with a fixed latent period and non-local infections , 2011, Journal of Mathematical Biology.

[4]  Horst R. Thieme,et al.  Spectral Bound and Reproduction Number for Infinite-Dimensional Population Structure and Time Heterogeneity , 2009, SIAM J. Appl. Math..

[5]  Vincenzo Capasso,et al.  Analysis of a Reaction-Diffusion System Modeling Man-Environment-Man Epidemics , 1997, SIAM J. Appl. Math..

[6]  Rui Peng,et al.  Asymptotic profile of the positive steady state for an SIS epidemic reaction–diffusion model: Effects of epidemic risk and population movement , 2013 .

[7]  J. Watmough,et al.  Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. , 2002, Mathematical biosciences.

[8]  Junping Shi,et al.  Persistence and Bifurcation of Degenerate Solutions , 1999 .

[9]  Xingfu Zou,et al.  AVIAN INFLUENZA DYNAMICS IN WILD BIRDS WITH BIRD MOBILITY AND SPATIAL HETEROGENEOUS ENVIRONMENT , 2012 .

[10]  Xiao-Qiang Zhao,et al.  A Nonlocal and Time-Delayed Reaction-Diffusion Model of Dengue Transmission , 2011, SIAM J. Appl. Math..

[11]  S. Hsu,et al.  On a system of reaction–diffusion equations arising from competition with internal storage in an unstirred chemostat , 2010 .

[12]  Amnon Pazy,et al.  Semigroups of Linear Operators and Applications to Partial Differential Equations , 1992, Applied Mathematical Sciences.

[13]  Roger D. Nussbaum,et al.  Eigenvectors of nonlinear positive operators and the linear Krein-Rutman theorem , 1981 .

[14]  L. Dung Dissipativity and global attractors for a class of quasilinear parabolic systems , 1997 .

[15]  J. Westwater,et al.  The Mathematics of Diffusion. , 1957 .

[16]  Yihong Du,et al.  Allee effect and bistability in a spatially heterogeneous predator-prey model , 2007 .

[17]  G. Dwyer Density Dependence and Spatial Structure in the Dynamics of Insect Pathogens , 1994, The American Naturalist.

[18]  Xiao-Qiang Zhao,et al.  Robust persistence for semidynamical systems , 2001 .

[19]  Sze-Bi Hsu,et al.  Global dynamics of zooplankton and harmful algae in flowing habitats , 2013 .

[20]  V Capasso,et al.  Convergence to equilibrium states for a reaction-diffusion system modelling the spatial spread of a class of bacterial and viral diseases , 1981, Journal of mathematical biology.

[21]  Rui Peng,et al.  Asymptotic profiles of the positive steady state for an SIS epidemic reaction-diffusion model. Part I , 2009 .

[22]  Xiao-Qiang Zhao,et al.  Dynamical systems in population biology , 2003 .

[23]  S. Hsu,et al.  Dynamics of a Periodically Pulsed Bio-Reactor Model With a Hydraulic Storage Zone , 2011 .

[24]  John Crank,et al.  The Mathematics Of Diffusion , 1956 .

[25]  J. Hale Asymptotic Behavior of Dissipative Systems , 1988 .

[26]  Nicholas D. Alikakos,et al.  LP Bounds of solutions of reaction-diffusion equations , 1979 .

[27]  F. Browder Nonlinear functional analysis , 1970 .

[28]  Jing Li,et al.  Modeling Spatial Spread of Infectious Diseases with a Fixed Latent Period in a Spatially Continuous Domain , 2009, Bulletin of mathematical biology.

[29]  David Abend,et al.  Maximum Principles In Differential Equations , 2016 .

[30]  Xiao-Qiang Zhao,et al.  Computation of the basic reproduction numbers for reaction-diffusion epidemic models , 2023, Mathematical biosciences and engineering : MBE.

[31]  Hal L. Smith,et al.  Abstract functional-differential equations and reaction-diffusion systems , 1990 .

[32]  Yuan Lou,et al.  Asymptotic profiles of the steady states for an SIS epidemic reaction-diffusion model , 2008 .

[33]  Xiao-Qiang Zhao,et al.  Global Attractors and Steady States for Uniformly Persistent Dynamical Systems , 2005, SIAM J. Math. Anal..

[34]  M. Crandall,et al.  Bifurcation from simple eigenvalues , 1971 .

[35]  Hal L. Smith,et al.  Monotone Dynamical Systems: An Introduction To The Theory Of Competitive And Cooperative Systems (Mathematical Surveys And Monographs) By Hal L. Smith , 1995 .

[36]  Horst R. Thieme,et al.  Convergence results and a Poincaré-Bendixson trichotomy for asymptotically autonomous differential equations , 1992 .

[37]  Junping Shi,et al.  On global bifurcation for quasilinear elliptic systems on bounded domains , 2009 .

[38]  Feng-Bin Wang A system of partial differential equations modeling the competition for two complementary resources in flowing habitats , 2010 .

[39]  O. Diekmann,et al.  On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations , 1990, Journal of mathematical biology.