Spectral multipliers in group algebras and noncommutative Calderón-Zygmund theory

In this paper we solve three problems in noncommutative harmonic analysis which are related to endpoint inequalities for singular integrals. In first place, we prove that an L2-form of Hörmander’s kernel condition suffices for the weak type (1,1) of Calderón-Zygmund operators acting on matrix-valued functions. To that end, we introduce an improved CZ decomposition for martingale filtrations in von Neumann algebras, and apply a very simple unconventional argument which notably avoids pseudolocalization. In second place, we establish as well the weak L1 endpoint for matrix-valued CZ operators over nondoubling measures of polynomial growth, in the line of the work of Tolsa and Nazarov/Treil/Volberg. The above results are valid for other von Neumann algebras and solve in the positive two open problems formulated in 2009. An even more interesting problem is the lack of L1 endpoint inequalities for singular Fourier and Schur multipliers over nonabelian groups. Given a locally compact group G equipped with a conditionally negative length ψ : G → R+, we prove that Herz-Schur multipliers with symbol m◦ψ satisfying a Mikhlin condition in terms of the ψ-cocycle dimension are of weak type (1, 1). Our result extends to Fourier multipliers for amenable groups and impose sharp regularity conditions on the symbol. The proof crucially combines our new CZ methods with novel forms of recent transference techniques. This L1 endpoint gives a very much expected inequality which complements the L∞ → BMO estimates proved in 2014 by Junge, Mei and Parcet.

[1]  D. Müller Twisted convolutions with Calderón-Zygmund kernels. , 1984 .

[2]  T. Mei,et al.  An operator-valued T1 theory for symmetric CZOs , 2019, Journal of Functional Analysis.

[3]  T. Hytonen,et al.  Systems of dyadic cubes in a doubling metric space , 2010, 1012.1985.

[4]  Marius Junge,et al.  Singular integrals in quantum Euclidean spaces , 2017, Memoirs of the American Mathematical Society.

[5]  M. Junge,et al.  Noncommutative Riesz transforms -- Dimension free bounds and Fourier multipliers , 2014, 1407.2475.

[6]  U. Haagerup,et al.  Multipliers of the Fourier Algebras of Some Simple Lie Groups and Their Discrete Subgroups , 1985 .

[7]  E. Stein,et al.  Marcinkiewicz multipliers and multi-parameter structure on Heisenberg (-type) groups, I , 1995 .

[8]  M. Junge,et al.  Algebraic Calderón-Zygmund theory , 2019 .

[9]  N. Randrianantoanina,et al.  Gundy's Decomposition for Non‐Commutative Martingales and Applications , 2004, math/0411296.

[10]  U. Haagerup,et al.  Simple Lie groups without the approximation property , 2012, 1201.1250.

[11]  M. Junge,et al.  BMO-estimates for non-commutative vector valued Lipschitz functions , 2019, Journal of Functional Analysis.

[12]  Characterizations of operator-valued Hardy spaces and applications to harmonic analysis on quantum tori , 2015, 1507.02409.

[13]  D. Potapov,et al.  Weak type commutator and Lipschitz estimates: resolution of the Nazarov-Peller conjecture , 2015, American Journal of Mathematics.

[14]  M. Junge,et al.  Smooth Fourier multipliers on group von Neumann algebras , 2010, 1010.5320.

[15]  泉 英明,et al.  Non-commutative Lp-spaces〔和文〕 (作用表環論の進展) , 2000 .

[16]  M. Junge,et al.  Smooth Fourier multipliers in group algebras via Sobolev dimension , 2015, 1505.05316.

[17]  Non-Commutative Martingale Transforms , 2001, math/0111264.

[18]  José M. Conde-Alonso,et al.  Operator-valued dyadic harmonic analysis beyond doubling measures , 2014, 1412.4937.

[19]  T. Mei,et al.  Pseudo-Localization of Singular Integrals and Noncommutative Littlewood–Paley Inequalities , 2008, 0807.4371.

[20]  X. Tolsa Growth Estimates for Cauchy Integrals of Measures and Rectifiability , 2007 .

[21]  T. D. Laat,et al.  Approximation properties for noncommutative $L^p$-spaces of high rank lattices and nonembeddability of expanders , 2014, 1403.6415.

[22]  G. Pisier Martingales in Banach Spaces , 2016 .

[23]  D. Potapov,et al.  Operator-Lipschitz functions in Schatten–von Neumann classes , 2009, 0904.4095.

[24]  J. Parcet,et al.  Pseudo-localization of singular integrals and noncommutative Calderon-Zygmund theory , 2007, 0704.2950.

[25]  V. Lafforgue,et al.  Noncommutative $L^{p}$-spaces without the completely bounded approximation property , 2010, 1004.2327.

[26]  Michael Christ,et al.  A T(b) theorem with remarks on analytic capacity and the Cauchy integral , 1990 .

[27]  U. Haagerup An example of a non nuclearC*-algebra, which has the metric approximation property , 1978 .

[28]  I. Cuculescu Martingales on von Neumann algebras , 1971 .

[29]  Quanhua Xu,et al.  Sobolev, Besov and Triebel-Lizorkin spaces on quantum tori , 2015, 1507.01789.

[30]  J. Parcet,et al.  Dyadic harmonic analysis beyond doubling measures , 2012, 1211.6291.

[31]  Quanhua Xu,et al.  Harmonic Analysis on Quantum Tori , 2012, 1206.3358.

[32]  Maximal singular integral operators acting on noncommutative $L_p$-spaces , 2020, 2009.03827.

[33]  Nondoubling Calderón–Zygmund theory: a dyadic approach , 2016, Journal of Fourier Analysis and Applications.

[34]  S. Treil,et al.  Weak type estimates and Cotlar inequalities for Calderón-Zygmund operators on nonhomogeneous spaces , 1997, math/9711210.

[35]  'Eric Ricard,et al.  Transfer of Fourier Multipliers into Schur Multipliers and Sumsets in a Discrete Group , 2010, Canadian Journal of Mathematics.

[36]  Martijn Caspers,et al.  Schur and Fourier multipliers of an amenable group acting on non-commutative L p -spaces , 2013, 1303.0135.

[37]  Painlevé's problem and the semiadditivity of analytic capacity , 2002, math/0204027.

[38]  U. Haagerup,et al.  Completely bounded multipliers of the Fourier algebra of a simple Lie group of real rank one , 1989 .

[39]  K. Rogers,et al.  Twisted Hilbert transforms vs Kakeya sets of directions , 2012, 1207.1992.

[40]  Alessio Martini,et al.  Spectral multipliers on 2-step groups: topological versus homogeneous dimension , 2015, 1508.01687.

[41]  X. Domènech Bilipschitz maps, analytic capacity, and the Cauchy integral , 2005 .

[42]  Richard L. Rubin,et al.  Transferring Fourier multipliers from SU(2) to the Heisenberg group , 1986 .

[43]  CALDERÓN-ZYGMUND OPERATORS ASSOCIATED TO MATRIX-VALUED KERNELS , 2012, 1201.4351.

[44]  M. Junge,et al.  Harmonic Analysis Approach to Gromov–Hausdorff Convergence for Noncommutative Tori , 2016, 1612.02735.

[45]  S. Semmes,et al.  VARIATION FOR RIESZ TRANSFORMS AND UNIFORM RECTIFIABILITY , 2011 .

[46]  Fedor Nazarov,et al.  TheTb-theorem on non-homogeneous spaces , 2003 .

[47]  R. Wheeden,et al.  Results on weighted norm inequalities for multipliers , 1979 .