Vesicle computers: Approximating Voronoi diagram on Voronoi automata

Abstract Irregular arrangements of vesicles filled with excitable and precipitating chemical systems are imitated by Voronoi automata – finite-state machines defined on a planar Voronoi diagram. Every Voronoi cell takes four states: resting, excited, refractory and precipitate. A resting cell excites if it has at least one neighbour in an excited state. The cell precipitates if the ratio of excited cells in its neighbourhood versus the number of neighbours exceeds a certain threshold. To approximate a Voronoi diagram on Voronoi automata we project a planar set onto the automaton lattice, thus cells corresponding to data-points are excited. Excitation waves propagate across the Voronoi automaton, interact with each other and form precipitate at the points of interaction. The configuration of the precipitate represents the edges of an approximated Voronoi diagram. We discover the relationship between the quality of the Voronoi diagram approximation and the precipitation threshold, and demonstrate the feasibility of our model in approximating Voronoi diagrams of arbitrary-shaped objects and in constructing a skeleton of a planar shape.

[1]  Irving R Epstein,et al.  A reaction-diffusion memory device. , 2006, Angewandte Chemie.

[2]  L. Oger,et al.  Arrangement of discs in 2d binary assemblies , 1995 .

[3]  S. Hastings,et al.  Spatial Patterns for Discrete Models of Diffusion in Excitable Media , 1978 .

[4]  Atsuyuki Okabe,et al.  Spatial Tessellations: Concepts and Applications of Voronoi Diagrams , 1992, Wiley Series in Probability and Mathematical Statistics.

[5]  Steven Fortune,et al.  A sweepline algorithm for Voronoi diagrams , 1986, SCG '86.

[6]  A. Adamatzky,et al.  Chemical processor for computation of voronoi diagram , 1996 .

[7]  Anna T. Lawniczak,et al.  Reactive lattice gas automata , 1991 .

[8]  J. Zarzycki Structure of dense gels , 1992 .

[9]  Andrew Adamatzky,et al.  Computational modalities of Belousov-Zhabotinsky encapsulated vesicles , 2010, Nano Commun. Networks.

[10]  Andrew Adamatzky,et al.  On Polymorphic Logical Gates in Subexcitable Chemical Medium , 2010, Int. J. Bifurc. Chaos.

[11]  Keishi Gotoh,et al.  Statistical geometrical approach to random packing density of equal spheres , 1974, Nature.

[12]  J. D. BERNAL,et al.  Packing of Spheres: Co-ordination of Randomly Packed Spheres , 1960, Nature.

[13]  Dominique Attali,et al.  Computing and Simplifying 2D and 3D Continuous Skeletons , 1997, Comput. Vis. Image Underst..

[14]  R. Brubaker Models for the perception of speech and visual form: Weiant Wathen-Dunn, ed.: Cambridge, Mass., The M.I.T. Press, I–X, 470 pages , 1968 .

[15]  Michael Ian Shamos,et al.  Computational geometry: an introduction , 1985 .

[16]  Marina L. Gavrilova,et al.  The Voronoi-Delaunay approach for the free volume analysis of a packing of balls in a cylindrical container , 2002, Future Gener. Comput. Syst..

[17]  Georges Voronoi Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Deuxième mémoire. Recherches sur les parallélloèdres primitifs. , 1908 .

[18]  Mario C. Selvestrel,et al.  Skeletonizing Topographical Regions for Navigational Path Planning (Technical Report) , 1999 .

[19]  Tetsuya Asai,et al.  Reaction-diffusion computers , 2005 .

[20]  Andrew Adamatzky,et al.  On Multitasking in Parallel Chemical Processors: Experimental Findings , 2003, Int. J. Bifurc. Chaos.

[21]  Andrew Adamatzky,et al.  On beta-skeleton automata with memory , 2011, J. Comput. Sci..

[22]  Matjaž Perc,et al.  Periodic calcium waves in coupled cells induced by internal noise , 2007 .

[23]  Frederic Fol Leymarie,et al.  Simulating the Grassfire Transform Using an Active Contour Model , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[24]  H. Blum Biological shape and visual science (part I) , 1973 .

[25]  Andrew Adamatzky On excitable β-skeletons , 2010, J. Comput. Sci..

[26]  Klaus-Peter Zauner,et al.  Artificial Wet Neuronal Networks from Compartmentalised Excitable Chemical Media , 2011, ERCIM News.

[27]  Ben de Lacy Costello,et al.  Constructive Chemical Processors - Experimental Evidence that Shows this Class of Programmable Pattern Forming reactions Exist at the Edge of a Highly Nonlinear Region , 2003, Int. J. Bifurc. Chaos.

[28]  Dietrich Stoyan,et al.  Statistical analysis of random sphere packings with variable radius distribution , 2006 .

[29]  Rolf Klein,et al.  Concrete and Abstract Voronoi Diagrams , 1990, Lecture Notes in Computer Science.

[30]  A. Poupon Voronoi and Voronoi-related tessellations in studies of protein structure and interaction. , 2004, Current opinion in structural biology.

[31]  B. de Lacy Costello,et al.  Voronoi diagrams generated by regressing edges of precipitation fronts. , 2004, The Journal of chemical physics.

[32]  Andrew Adamatzky,et al.  On computing in fine-grained compartmentalised Belousov-Zhabotinsky medium , 2010, 1006.1900.

[33]  Ferdinand Peper,et al.  Massively parallel computing on an organic molecular layer , 2010, ArXiv.

[34]  A. ROSENFELD,et al.  Distance functions on digital pictures , 1968, Pattern Recognit..

[35]  Andrew Adamatzky,et al.  Voronoi-like partition of lattice in cellular automata , 1996 .

[36]  Linn W. Hobbs,et al.  Network topology in aperiodic networks , 1995 .

[37]  W. E. Hartnett,et al.  Shape Recognition, Prairie Fires, Convex Deficiencies and Skeletons , 1968 .

[38]  A lattice gas automaton approach to “turbulent diffusion” , 2001, cond-mat/0110575.

[39]  H. Blum Biological shape and visual science. I. , 1973, Journal of theoretical biology.

[40]  Marina L. Gavrilova,et al.  Implementation of the Voronoi-Delaunay Method for Analysis of Intermolecular Voids , 2004, ICCSA.