The stability of formulae of the Gohberg–Semencul–Trench type for Moore–Penrose and group inverses of Toeplitz matrices

Abstract We present a stability analysis of Gohberg–Semencul–Trench type formulae for the Moore–Penrose and group inverses of singular Toeplitz matrices. We develop a fast algorithm for the computation of the Moore–Penrose inverse based on a Gohberg–Semencul–Trench type formula and the LSQR method. For the group inverse, the DGMRES method is used to perform the fast computation. Numerical tests show that the fast algorithms designed here are at least as good as the known Newton iteration.

[1]  W. F. Trench An Algorithm for the Inversion of Finite Toeplitz Matrices , 1964 .

[2]  Beatrice Meini,et al.  Approximate displacement rank and applications , 2001 .

[3]  Hebing Wu,et al.  Convergence properties of Krylov subspace methods for singular linear systems with arbitrary index , 2000 .

[4]  V. Pan Structured Matrices and Polynomials: Unified Superfast Algorithms , 2001 .

[5]  Hong Liu,et al.  A note on the stability of Toeplitz matrix inversion formulas , 2004, Appl. Math. Lett..

[6]  Michael,et al.  MODIFIED NEWTON'S ALGORITHM FOR COMPUTING THE GROUP INVERSES OF SINGULAR TOEPLITZ MATRICES , 2006 .

[7]  Georg Heinig,et al.  Algebraic Methods for Toeplitz-like Matrices and Operators , 1984 .

[8]  Xu Zhong On Moore-Penrose inverses of Toeplitz matrices , 1992 .

[9]  M. Gutknecht,et al.  The stability of inversion formulas for Toeplitz matrices , 1995 .

[10]  Avram Sidi,et al.  DGMRES: A GMRES-type algorithm for Drazin-inverse solution of singular non-symmetric linear systems , 2001 .

[11]  R. Hartwig,et al.  The hyperpower iteration revisited , 1996 .

[12]  Yi-min Wei,et al.  On group inverse of singular Toeplitz matrices , 2005 .

[13]  R. Chan,et al.  An Introduction to Iterative Toeplitz Solvers , 2007 .

[14]  George Labahn,et al.  Inversion of Toeplitz Matrices with Only Two Standard Equations , 1992 .

[15]  Michael K. Ng,et al.  On inversion of Toeplitz matrices , 2002 .

[16]  Marc Van Barel,et al.  Solving Toeplitz Least Squares Problems by Means of Newton's Iteration , 2003, Numerical Algorithms.

[17]  Yimin Wei,et al.  The analysis of restart DGMRES for solving singular linear systems , 2006, Appl. Math. Comput..

[18]  A. Böttcher,et al.  Introduction to Large Truncated Toeplitz Matrices , 1998 .

[19]  Yi-min Wei,et al.  Generalized Inverses of Matrices , 2013 .

[20]  Ali H. Sayed,et al.  Displacement Structure: Theory and Applications , 1995, SIAM Rev..

[21]  Adi Ben-Israel,et al.  Generalized inverses: theory and applications , 1974 .

[22]  Michael A. Saunders,et al.  LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares , 1982, TOMS.

[23]  Frank Hellinger,et al.  Moore-Penrose Inversion of Square Toeplitz Matrices , 1994 .

[24]  Hui Wei,et al.  A simpler DGMRES , 2010, Appl. Math. Comput..

[25]  Michael K. Ng,et al.  Computing Moore-Penrose inverses of Toeplitz matrices by Newton's iteration , 2004, Math. Comput. Model..

[26]  Michael K. Ng,et al.  Displacement structure of group inverses , 2005, Numer. Linear Algebra Appl..

[27]  Yimin Wei,et al.  An inexact shift‐and‐invert Arnoldi algorithm for Toeplitz matrix exponential , 2015, Numer. Linear Algebra Appl..