The stability of formulae of the Gohberg–Semencul–Trench type for Moore–Penrose and group inverses of Toeplitz matrices
暂无分享,去创建一个
[1] W. F. Trench. An Algorithm for the Inversion of Finite Toeplitz Matrices , 1964 .
[2] Beatrice Meini,et al. Approximate displacement rank and applications , 2001 .
[3] Hebing Wu,et al. Convergence properties of Krylov subspace methods for singular linear systems with arbitrary index , 2000 .
[4] V. Pan. Structured Matrices and Polynomials: Unified Superfast Algorithms , 2001 .
[5] Hong Liu,et al. A note on the stability of Toeplitz matrix inversion formulas , 2004, Appl. Math. Lett..
[6] Michael,et al. MODIFIED NEWTON'S ALGORITHM FOR COMPUTING THE GROUP INVERSES OF SINGULAR TOEPLITZ MATRICES , 2006 .
[7] Georg Heinig,et al. Algebraic Methods for Toeplitz-like Matrices and Operators , 1984 .
[8] Xu Zhong. On Moore-Penrose inverses of Toeplitz matrices , 1992 .
[9] M. Gutknecht,et al. The stability of inversion formulas for Toeplitz matrices , 1995 .
[10] Avram Sidi,et al. DGMRES: A GMRES-type algorithm for Drazin-inverse solution of singular non-symmetric linear systems , 2001 .
[11] R. Hartwig,et al. The hyperpower iteration revisited , 1996 .
[12] Yi-min Wei,et al. On group inverse of singular Toeplitz matrices , 2005 .
[13] R. Chan,et al. An Introduction to Iterative Toeplitz Solvers , 2007 .
[14] George Labahn,et al. Inversion of Toeplitz Matrices with Only Two Standard Equations , 1992 .
[15] Michael K. Ng,et al. On inversion of Toeplitz matrices , 2002 .
[16] Marc Van Barel,et al. Solving Toeplitz Least Squares Problems by Means of Newton's Iteration , 2003, Numerical Algorithms.
[17] Yimin Wei,et al. The analysis of restart DGMRES for solving singular linear systems , 2006, Appl. Math. Comput..
[18] A. Böttcher,et al. Introduction to Large Truncated Toeplitz Matrices , 1998 .
[19] Yi-min Wei,et al. Generalized Inverses of Matrices , 2013 .
[20] Ali H. Sayed,et al. Displacement Structure: Theory and Applications , 1995, SIAM Rev..
[21] Adi Ben-Israel,et al. Generalized inverses: theory and applications , 1974 .
[22] Michael A. Saunders,et al. LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares , 1982, TOMS.
[23] Frank Hellinger,et al. Moore-Penrose Inversion of Square Toeplitz Matrices , 1994 .
[24] Hui Wei,et al. A simpler DGMRES , 2010, Appl. Math. Comput..
[25] Michael K. Ng,et al. Computing Moore-Penrose inverses of Toeplitz matrices by Newton's iteration , 2004, Math. Comput. Model..
[26] Michael K. Ng,et al. Displacement structure of group inverses , 2005, Numer. Linear Algebra Appl..
[27] Yimin Wei,et al. An inexact shift‐and‐invert Arnoldi algorithm for Toeplitz matrix exponential , 2015, Numer. Linear Algebra Appl..