Static output-feedback stabilization of discrete-time Markovian jump linear systems: A system augmentation approach

This paper studies the static output-feedback (SOF) stabilization problem for discrete-time Markovian jump systems from a novel perspective. The closed-loop system is represented in a system augmentation form, in which input and gain-output matrices are separated. By virtue of the system augmentation, a novel necessary and sufficient condition for the existence of desired controllers is established in terms of a set of nonlinear matrix inequalities, which possess a monotonic structure for a linearized computation, and a convergent iteration algorithm is given to solve such inequalities. In addition, a special property of the feasible solutions enables one to further improve the solvability via a simple D-K type optimization on the initial values. An extension to mode-independent SOF stabilization is provided as well. Compared with some existing approaches to SOF synthesis, the proposed one has several advantages that make it specific for Markovian jump systems. The effectiveness and merit of the theoretical results are shown through some numerical examples.

[1]  K. Loparo,et al.  Stability and control of discrete-time jump linear systems , 1991 .

[2]  Frank L. Lewis,et al.  Parameterization of all stabilizing Hinfinity static state-feedback gains: Application to output-feedback design , 2007, Autom..

[3]  Alim P. C. Gonçalves,et al.  The H2-control for jump linear systems: cluster observations of the Markov state , 2002, Autom..

[4]  Lihua Xie,et al.  An improved mixed H2/H∞ control design for hard disk drives , 2005, IEEE Trans. Control. Syst. Technol..

[5]  J. Geromel,et al.  A new discrete-time robust stability condition , 1999 .

[6]  C.E. de Souza,et al.  Robust stability and stabilization of uncertain discrete-time Markovian jump linear systems , 2006, IEEE Transactions on Automatic Control.

[7]  A. Willsky,et al.  Discrete-time Markovian-jump linear quadratic optimal control , 1986 .

[8]  Yong-Yan Cao,et al.  A new necessary and sufficient condition for static output feedback stabilizability and comments on "Stabilization via static output feedback" , 1998, IEEE Trans. Autom. Control..

[9]  R. P. Marques,et al.  Mixed H2/H∞-control of discrete-time Markovian jump linear systems , 1998, IEEE Trans. Autom. Control..

[10]  Atsushi Fujimori Optimization of static output feedback using substitutive LMI formulation , 2004, IEEE Transactions on Automatic Control.

[11]  W. Yan Static Output Feedback Stabilization , 2006, TENCON 2006 - 2006 IEEE Region 10 Conference.

[12]  J. D. Val,et al.  A Convex Programming Approach to the H 2 -Control of Discrete-Time Markovian Jump Linear Systems , 1995 .

[13]  ProblemsLaurent El Ghaoui A Cone Complementarity Linearization Algorithmfor Static Output-Feedback and Related , 1997 .

[14]  Raja Sengupta,et al.  A bounded real lemma for jump systems , 2003, IEEE Trans. Autom. Control..

[15]  Ji-Woong Lee,et al.  Uniform stabilization of discrete-time switched and Markovian jump linear systems , 2006, Autom..

[16]  Peng Shi,et al.  Transition probability bounds for the stochastic stability robustness of continuous- and discrete-time Markovian jump linear systems , 2006, Autom..

[17]  J. Geromel,et al.  Numerical comparison of output feedback design methods , 1997, Proceedings of the 1997 American Control Conference (Cat. No.97CH36041).

[18]  Mohamed Boutayeb,et al.  Static output feedback stabilization with H/sub /spl infin// performance for linear discrete-time systems , 2005, IEEE Transactions on Automatic Control.

[19]  J. Lam,et al.  Mixed H2/H∞ Control of Discrete-Time Markovian Jump Systems via Static Output-Feedback Controllers , 2008 .

[20]  E. Yaz Linear Matrix Inequalities In System And Control Theory , 1998, Proceedings of the IEEE.

[21]  P. Dorato,et al.  Static output feedback: a survey , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[22]  Wook Hyun Kwon,et al.  Sufficient LMI conditions for the H/sub /spl infin// output feedback stabilization of linear discrete-time systems , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[23]  James Lam,et al.  New approach to mixed H/sub 2//H/sub /spl infin// filtering for polytopic discrete-time systems , 2005, IEEE Transactions on Signal Processing.

[24]  Oswaldo Luiz V. Costa,et al.  Indefinite quadratic with linear costs optimal control of Markov jump with multiplicative noise systems , 2007, Autom..

[25]  James Lam,et al.  Stabilization of linear systems over networks with bounded packet loss , 2007, Autom..

[26]  R. P. Marques,et al.  Mixed H2/H∞-control of discrete-time Markovian jump linear systems , 1998, IEEE Trans. Autom. Control..

[27]  M. C. D. Oliveiraa,et al.  A new discrete-time robust stability condition ( , 1999 .

[28]  Subhrakanti Dey,et al.  Stability of Kalman filtering with Markovian packet losses , 2007, Autom..

[29]  R. P. Marques,et al.  Robust H 2-control for discrete-time Markovian jump linear systems , 2000 .

[30]  Carlos E. de Souza,et al.  Robust stability and stabilization of uncertain discrete-time Markovian jump linear systems , 2006, IEEE Transactions on Automatic Control.

[31]  Lihua Xie,et al.  Control Design for Hard Disk Drives , 2005 .

[32]  John B. Moore,et al.  A Newton-like method for solving rank constrained linear matrix inequalities , 2006, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[33]  L. Ghaoui,et al.  A cone complementarity linearization algorithm for static output-feedback and related problems , 1996, Proceedings of Joint Conference on Control Applications Intelligent Control and Computer Aided Control System Design.

[34]  Sérgio Ricardo de Souza,et al.  Convex analysis of output feedback structural constraints , 1993, Proceedings of 32nd IEEE Conference on Decision and Control.

[35]  T. Iwasaki The dual iteration for fixed order control , 1997, Proceedings of the 1997 American Control Conference (Cat. No.97CH36041).

[36]  R. P. Marques,et al.  Discrete-Time Markov Jump Linear Systems , 2004, IEEE Transactions on Automatic Control.

[37]  James Lam,et al.  Static Output Feedback Stabilization: An ILMI Approach , 1998, Autom..

[38]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in Systems and Control Theory , 1994 .

[39]  M. Fragoso,et al.  Stability Results for Discrete-Time Linear Systems with Markovian Jumping Parameters , 1993 .