Automatic metric 3D surface mesh generation using subdivision surface geometrical model. Part 1: Construction of underlying geometrical model
暂无分享,去创建一个
[1] Leif Kobbelt,et al. Interpolatory Subdivision on Open Quadrilateral Nets with Arbitrary Topology , 1996, Comput. Graph. Forum.
[2] Chi King Lee. Automatic metric 3D surface mesh generation using subdivision surface geometrical model. Part 2 : mesh generation algorithm and examples , 2003 .
[3] Peter Schröder,et al. Interpolating Subdivision for meshes with arbitrary topology , 1996, SIGGRAPH.
[4] P. George,et al. Delaunay mesh generation governed by metric specifications. Part I algorithms , 1997 .
[5] R. Löhner. Regridding Surface Triangulations , 1996 .
[6] Bernd Hamann,et al. A tessellation algorithm for the representation of trimmed surfaces with arbitrary trimming curves , 1996, Comput. Aided Des..
[7] P. George,et al. Parametric surface meshing using a combined advancing-front generalized Delaunay approach , 2000 .
[8] Steven E. Benzley,et al. GENERALIZED 3-D PAVING : AN AUTOMATED QUADRILATERAL SURFACE MESH GENERATION ALGORITHM , 1996 .
[9] Rainald Löhner,et al. Some useful data structures for the generation of unstructured grids , 1988 .
[10] Chi King Lee,et al. On curvature element-size control in metric surface mesh generation , 2001 .
[11] K. Schweizerhof,et al. Iterative mesh generation for FE‐computations on free form surfaces , 1997 .
[12] C. T. Shaw,et al. Automated procedures for Boolean operations on finite element meshes , 1997 .
[13] Nira Dyn,et al. A 4-point interpolatory subdivision scheme for curve design , 1987, Comput. Aided Geom. Des..
[14] Y. K. Lee,et al. Automatic generation of anisotropic quadrilateral meshes on three‐dimensional surfaces using metric specifications , 2002 .
[15] L. Piegl,et al. Curve and surface constructions using rational B-splines , 1987 .
[16] M. Ortiz,et al. Subdivision surfaces: a new paradigm for thin‐shell finite‐element analysis , 2000 .
[17] Rainald Löhner,et al. Surface triangulation over intersecting geometries , 1999 .
[18] Les A. Piegl,et al. Tessellating trimmed surfaces , 1995, Comput. Aided Des..
[19] Petr Krysl,et al. Triangulation of 3D surfaces , 1997, Engineering with Computers.
[20] Roland W. Lewis,et al. Three-dimensional unstructured mesh generation: Part 2. Surface meshes , 1996 .
[21] Charles T. Loop,et al. Smooth Subdivision Surfaces Based on Triangles , 1987 .
[22] Dereck S. Meek,et al. A triangular G1 patch from boundary curves , 1996, Comput. Aided Des..
[23] E. Catmull,et al. Recursively generated B-spline surfaces on arbitrary topological meshes , 1978 .
[24] S. Owen,et al. H-Morph: an indirect approach to advancing front hex meshing , 1999 .
[25] P. George,et al. Delaunay mesh generation governed by metric specifications. Part II. applications , 1997 .
[26] Tony DeRose,et al. Piecewise smooth surface reconstruction , 1994, SIGGRAPH.
[27] Jos Stam,et al. Exact evaluation of Catmull-Clark subdivision surfaces at arbitrary parameter values , 1998, SIGGRAPH.
[28] N. Dyn,et al. A butterfly subdivision scheme for surface interpolation with tension control , 1990, TOGS.
[29] Chi King Lee,et al. Automatic metric advancing front triangulation over curved surfaces , 2000 .
[30] Alain Rassineux,et al. Surface remeshing by local hermite diffuse interpolation , 2000 .