Automatic metric 3D surface mesh generation using subdivision surface geometrical model. Part 1: Construction of underlying geometrical model

Summary This paper proposes a new automatic mesh generation algorithm for 3D surface mesh generation. The algorithm is base d on the metric specification approach and can generate anisotropic meshes on 3D surfaces. It is based on a new geometrical model using the interpolating subdivision surface concept. By using the subdivision surface concept, the new mesh generator can generate finite element meshes to model a wide range of surfaces which may contain sharp features such as cusp and crease lines. When comparing with other algorithms which use analytical surface patches as the underlying geometrical model, the new mesh generation scheme can be used in applications such as large deformation or crack analyses in which the domains to be gridded are not well defined or involve changing boundary. The presentation of the work is divided into two parts. In Part I, i.e. the present paper, a detailed description of the underlying geometrical model used will be given while in Part II, attentions will be focused on the mesh generation algorithms and the performance of the mesh generator.

[1]  Leif Kobbelt,et al.  Interpolatory Subdivision on Open Quadrilateral Nets with Arbitrary Topology , 1996, Comput. Graph. Forum.

[2]  Chi King Lee Automatic metric 3D surface mesh generation using subdivision surface geometrical model. Part 2 : mesh generation algorithm and examples , 2003 .

[3]  Peter Schröder,et al.  Interpolating Subdivision for meshes with arbitrary topology , 1996, SIGGRAPH.

[4]  P. George,et al.  Delaunay mesh generation governed by metric specifications. Part I algorithms , 1997 .

[5]  R. Löhner Regridding Surface Triangulations , 1996 .

[6]  Bernd Hamann,et al.  A tessellation algorithm for the representation of trimmed surfaces with arbitrary trimming curves , 1996, Comput. Aided Des..

[7]  P. George,et al.  Parametric surface meshing using a combined advancing-front generalized Delaunay approach , 2000 .

[8]  Steven E. Benzley,et al.  GENERALIZED 3-D PAVING : AN AUTOMATED QUADRILATERAL SURFACE MESH GENERATION ALGORITHM , 1996 .

[9]  Rainald Löhner,et al.  Some useful data structures for the generation of unstructured grids , 1988 .

[10]  Chi King Lee,et al.  On curvature element-size control in metric surface mesh generation , 2001 .

[11]  K. Schweizerhof,et al.  Iterative mesh generation for FE‐computations on free form surfaces , 1997 .

[12]  C. T. Shaw,et al.  Automated procedures for Boolean operations on finite element meshes , 1997 .

[13]  Nira Dyn,et al.  A 4-point interpolatory subdivision scheme for curve design , 1987, Comput. Aided Geom. Des..

[14]  Y. K. Lee,et al.  Automatic generation of anisotropic quadrilateral meshes on three‐dimensional surfaces using metric specifications , 2002 .

[15]  L. Piegl,et al.  Curve and surface constructions using rational B-splines , 1987 .

[16]  M. Ortiz,et al.  Subdivision surfaces: a new paradigm for thin‐shell finite‐element analysis , 2000 .

[17]  Rainald Löhner,et al.  Surface triangulation over intersecting geometries , 1999 .

[18]  Les A. Piegl,et al.  Tessellating trimmed surfaces , 1995, Comput. Aided Des..

[19]  Petr Krysl,et al.  Triangulation of 3D surfaces , 1997, Engineering with Computers.

[20]  Roland W. Lewis,et al.  Three-dimensional unstructured mesh generation: Part 2. Surface meshes , 1996 .

[21]  Charles T. Loop,et al.  Smooth Subdivision Surfaces Based on Triangles , 1987 .

[22]  Dereck S. Meek,et al.  A triangular G1 patch from boundary curves , 1996, Comput. Aided Des..

[23]  E. Catmull,et al.  Recursively generated B-spline surfaces on arbitrary topological meshes , 1978 .

[24]  S. Owen,et al.  H-Morph: an indirect approach to advancing front hex meshing , 1999 .

[25]  P. George,et al.  Delaunay mesh generation governed by metric specifications. Part II. applications , 1997 .

[26]  Tony DeRose,et al.  Piecewise smooth surface reconstruction , 1994, SIGGRAPH.

[27]  Jos Stam,et al.  Exact evaluation of Catmull-Clark subdivision surfaces at arbitrary parameter values , 1998, SIGGRAPH.

[28]  N. Dyn,et al.  A butterfly subdivision scheme for surface interpolation with tension control , 1990, TOGS.

[29]  Chi King Lee,et al.  Automatic metric advancing front triangulation over curved surfaces , 2000 .

[30]  Alain Rassineux,et al.  Surface remeshing by local hermite diffuse interpolation , 2000 .