Structural insights into the origins of DNA polymerase fidelity.

[1]  F. Crick,et al.  Molecular Structure of Nucleic Acids: A Structure for Deoxyribose Nucleic Acid , 1953, Nature.

[2]  R. Knippers,et al.  DNA Polymerase II , 1970, Nature.

[3]  T. Steitz,et al.  Structure of large fragment of Escherichia coli DNA polymerase I complexed with dTMP , 2020, Nature.

[4]  W. Hunter,et al.  Structure of an adenine˙cytosine base pair in DNA and its implications for mismatch repair , 1986, Nature.

[5]  H. Echols,et al.  Fidelity mechanisms in DNA replication. , 1991, Annual review of biochemistry.

[6]  K. Johnson,et al.  Conformational coupling in DNA polymerase fidelity. , 1993, Annual review of biochemistry.

[7]  S. Zinnen,et al.  Misincorporation and mispaired primer extension by human immunodeficiency virus reverse transcriptase. , 1994, The Journal of biological chemistry.

[8]  Samuel H. Wilson,et al.  Structures of ternary complexes of rat DNA polymerase beta, a DNA template-primer, and ddCTP. , 1994, Science.

[9]  T. Steitz,et al.  A unified polymerase mechanism for nonhomologous DNA and RNA polymerases. , 1994, Science.

[10]  M. Donlin,et al.  Mutants affecting nucleotide recognition by T7 DNA polymerase. , 1994, Biochemistry.

[11]  C. Post,et al.  Reexamination of induced fit as a determinant of substrate specificity in enzymatic reactions. , 1995, Biochemistry.

[12]  C. M. Joyce,et al.  Deoxynucleoside Triphosphate and Pyrophosphate Binding Sites in the Catalytically Competent Ternary Complex for the Polymerase Reaction Catalyzed by DNA Polymerase I (Klenow Fragment) (*) , 1995, The Journal of Biological Chemistry.

[13]  M. Modak,et al.  Significance of the O-helix residues of Escherichia coli DNA polymerase I in DNA synthesis: dynamics of the dNTP binding pocket. , 1996, Biochemistry.

[14]  S. Edwards,et al.  Slow rate of phosphodiester bond formation accounts for the strong bias that Taq DNA polymerase shows against 2',3'-dideoxynucleotide terminators. , 1996, Biochemistry.

[15]  C. Lawrence,et al.  Deoxycytidyl transferase activity of yeast REV1 protein , 1996, Nature.

[16]  Samuel H. Wilson,et al.  Crystal structures of human DNA polymerase beta complexed with gapped and nicked DNA: evidence for an induced fit mechanism. , 1997, Biochemistry.

[17]  G L Verdine,et al.  Structure of a covalently trapped catalytic complex of HIV-1 reverse transcriptase: implications for drug resistance. , 1998, Science.

[18]  W. Beard,et al.  Structural insights into DNA polymerase beta fidelity: hold tight if you want it right. , 1998, Chemistry & biology.

[19]  S. Doublié,et al.  Crystal structure of a bacteriophage T7 DNA replication complex at 2.2 Å resolution , 1998, Nature.

[20]  Gabriel Waksman,et al.  Crystal structures of open and closed forms of binary and ternary complexes of the large fragment of Thermus aquaticus DNA polymerase I: structural basis for nucleotide incorporation , 1998, The EMBO journal.

[21]  Chikahide Masutani,et al.  The XPV (xeroderma pigmentosum variant) gene encodes human DNA polymerase η , 1999, Nature.

[22]  J. Wagner,et al.  The dinB gene encodes a novel E. coli DNA polymerase, DNA pol IV, involved in mutagenesis. , 1999, Molecular cell.

[23]  T. Steitz DNA Polymerases: Structural Diversity and Common Mechanisms* , 1999, The Journal of Biological Chemistry.

[24]  Robert E. Johnson,et al.  hRAD30 mutations in the variant form of xeroderma pigmentosum. , 1999, Science.

[25]  Samuel H. Wilson,et al.  Uniquely Altered DNA Replication Fidelity Conferred by an Amino Acid Change in the Nucleotide Binding Pocket of Human Immunodeficiency Virus Type 1 Reverse Transcriptase* , 1999, The Journal of Biological Chemistry.

[26]  M. Sawaya,et al.  An open and closed case for all polymerases. , 1999, Structure.

[27]  G. Walker,et al.  The Escherichia coli SOS mutagenesis proteins UmuD and UmuD' interact physically with the replicative DNA polymerase. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[28]  W. Beard,et al.  Structural design of a eukaryotic DNA repair polymerase: DNA polymerase beta. , 2000, Mutation research.

[29]  J. Wagner,et al.  The beta clamp targets DNA polymerase IV to DNA and strongly increases its processivity. , 2000, EMBO reports.

[30]  W. Olson,et al.  A-form conformational motifs in ligand-bound DNA structures. , 2000, Journal of molecular biology.

[31]  Roger Woodgate,et al.  Roles of E. coli DNA polymerases IV and V in lesion-targeted and untargeted SOS mutagenesis , 2000, Nature.

[32]  Satya Prakash,et al.  Eukaryotic polymerases ι and ζ act sequentially to bypass DNA lesions , 2000, Nature.

[33]  E. G. Frank,et al.  poliota, a remarkably error-prone human DNA polymerase. , 2000, Genes & development.

[34]  Fenghua Yuan,et al.  Preferential Incorporation of G Opposite Template T by the Low-Fidelity Human DNA Polymerase ι , 2000, Molecular and Cellular Biology.

[35]  Robert E. Johnson,et al.  Structure of the catalytic core of S. cerevisiae DNA polymerase eta: implications for translesion DNA synthesis. , 2001, Molecular cell.

[36]  L. Silvian,et al.  Crystal structure of a DinB family error-prone DNA polymerase from Sulfolobus solfataricus , 2001, Nature Structural Biology.

[37]  Thomas A. Steitz,et al.  Structure of the Replicating Complex of a Pol α Family DNA Polymerase , 2001, Cell.

[38]  T. Steitz,et al.  Crystal structure of a DinB lesion bypass DNA polymerase catalytic fragment reveals a classic polymerase catalytic domain. , 2001, Molecular cell.

[39]  J. Liu,et al.  Insight into the catalytic mechanism of DNA polymerase beta: structures of intermediate complexes. , 2001, Biochemistry.

[40]  W. Beard,et al.  DNA lesion bypass polymerases open up. , 2001, Structure.

[41]  Robert E. Johnson,et al.  Targeting of human DNA polymerase ι to the replication machinery via interaction with PCNA , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[42]  C. Kisker,et al.  Error-Prone DNA Polymerases Novel Structures and the Benefits of Infidelity , 2001, Cell.

[43]  R. Woodgate,et al.  Sulfolobus solfataricus P2 DNA polymerase IV (Dpo4): an archaeal DinB-like DNA polymerase with lesion-bypass properties akin to eukaryotic poleta. , 2001, Nucleic acids research.

[44]  L. Prakash,et al.  Interaction with PCNA is essential for yeast DNA polymerase eta function. , 2001, Molecular cell.

[45]  R. Woodgate,et al.  Crystal Structure of a Y-Family DNA Polymerase in Action A Mechanism for Error-Prone and Lesion-Bypass Replication , 2001, Cell.

[46]  Samuel H. Wilson,et al.  DNA Structure and Aspartate 276 Influence Nucleotide Binding to Human DNA Polymerase β , 2001, The Journal of Biological Chemistry.

[47]  Samuel H. Wilson,et al.  Efficiency of Correct Nucleotide Insertion Governs DNA Polymerase Fidelity* , 2002, The Journal of Biological Chemistry.

[48]  T. Kunkel,et al.  Low Fidelity DNA Synthesis by a Y Family DNA Polymerase Due to Misalignment in the Active Site* , 2002, The Journal of Biological Chemistry.

[49]  M. Goodman Error-prone repair DNA polymerases in prokaryotes and eukaryotes. , 2002, Annual review of biochemistry.

[50]  W. Konigsberg,et al.  Correlation of the kinetics of finger domain mutants in RB69 DNA polymerase with its structure. , 2002, Biochemistry.

[51]  Samuel H. Wilson,et al.  Polymerase beta simulations suggest that Arg258 rotation is a slow step rather than large subdomain motions per se. , 2002, Journal of molecular biology.

[52]  Satya Prakash,et al.  Stimulation of DNA Synthesis Activity of Human DNA Polymerase κ by PCNA , 2002, Molecular and Cellular Biology.