Hybrid separation processes—Combination of reactive distillation with membrane separation

In this paper, the modelling, simulation and process analysis for a hybrid separation process, the combination of reactive distillation with membrane separation, is presented. The application is illustrated by the heterogeneously catalysed n-propyl propionate synthesis from 1-propanol and propionic acid. The membrane module is located in the distillate stream of the reactive distillation column in order to selectively remove the produced water without use of entrainers. Key aspects for the theoretical description of reactive distillation processes are discussed. For the stand-alone reactive separation process, the simulation results with a non-equilibrium model are in good agreement with experimental data obtained in a pilot-scale column. Additionally, a comparison of the most common modelling depths, namely the non-equilibrium model with Maxwell–Stefan equations, the equilibrium model taking into account reaction kinetics and the equilibrium model assuming chemical equilibrium, is presented. Vapour permeation experiments using Sulzer Pervap™ 2201(D) have been performed in a pilot-scale membrane plant in order to determine the separation characteristics for the dewatering of the non-ideal binary 1-propanol–water mixture. A first process analysis of the combined unit operations shows the influence of structural and operational parameters on the performance of the feasible hybrid process.

[1]  Frank Lipnizki,et al.  Pervaporation-based hybrid process: a review of process design, applications and economics , 1999 .

[2]  John P. O'Connell,et al.  A Generalized Method for Predicting Second Virial Coefficients , 1975 .

[3]  Rajamani Krishna,et al.  Modelling reactive distillation , 2000 .

[4]  P. Kreis,et al.  Prozessanalyse hybrider Trennverfahren am Beispiel der Kopplung von Rektifikation und Membrantrennung , 2005 .

[5]  James R. Fair,et al.  Mass transfer in gauze packings , 1985 .

[6]  Achim Hoffmann,et al.  Catalytic distillation in structured packings: Methyl acetate synthesis , 2001 .

[7]  Andrzej Górak,et al.  Dynamic modelling and simulation of reactive batch distillation , 1999 .

[8]  James R. Fair,et al.  Distillation columns containing structured packings: a comprehensive model for their performance. 1. Hydraulic models , 1993 .

[9]  Jürgen Gmehling,et al.  Transesterification processes by combination of reactive distillation and pervaporation , 2004 .

[10]  J. G. Wijmans Process performance = membrane properties + operating conditions , 2003 .

[11]  Sanjay M. Mahajani,et al.  Industrial Applications of Reactive Distillation: Recent Trends , 2004 .

[12]  Robert Rautenbach,et al.  Membranverfahren : Grundlagen der Modul- und Anlagenauslegung ; mit 76 Tabellen , 2007 .

[13]  A. Górak,et al.  Process Analysis of Hybrid Separation Processes: Combination of Distillation and Pervaporation , 2006 .

[14]  Eugeny Y. Kenig,et al.  Rate-based modelling and simulation of reactive separations in gas/vapour–liquid systems , 2005 .

[15]  Eugeny Y. Kenig,et al.  Modelling of reactive separation processes: reactive absorption and reactive distillation , 2003 .

[16]  J. Degrève,et al.  Pervaporation of Binary and Ternary Mixtures of Water with Methanol and/or Ethanol , 2005 .

[17]  S. Steinigeweg,et al.  Reactive Distillation , 2000 .

[18]  C. von Scala,et al.  Kontinuierliche Herstellung von kosmetischen Fettsäureestern mittels Reaktivdestillation und Pervaporation , 2005 .

[19]  James R. Fair,et al.  Distillation Columns Containing Structured Packings: A Comprehensive Model for Their Performance. 2. Mass-Transfer Model , 1996 .

[20]  S. Blagov,et al.  Influence of ion-exchange resin catalysts on side reactions of the esterification of n-Butanol with acetic acid , 2006 .

[21]  J. Ortega,et al.  Vapor–Liquid Equilibria of Propyl Propanoate with 1-Alkanols at 101.32 kPa of Pressure , 1994 .