Relative expressive power of navigational querying on graphs

Motivated by both established and new applications, we study navigational query languages for graphs (binary relations). The simplest language has only the two operators union and composition, together with the identity relation. We make more powerful languages by adding any of the following operators: intersection; set difference; projection; coprojection; converse; and the diversity relation. All these operators map binary relations to binary relations. We compare the expressive power of all resulting languages. We do this not only for general path queries (queries where the result may be any binary relation) but also for boolean or yes/no queries (expressed by the nonemptiness of an expression). For both cases, we present the complete Hasse diagram of relative expressiveness. In particular the Hasse diagram for boolean queries contains some nontrivial separations and a few surprising collapses.

[1]  Diego Calvanese,et al.  The Description Logic Handbook , 2007 .

[2]  Bernhard Beckert,et al.  Dynamic Logic , 2007, The KeY Approach.

[3]  Dan Olteanu,et al.  Forward node-selecting queries over trees , 2007, TODS.

[4]  A. Tarski,et al.  A Formalization Of Set Theory Without Variables , 1987 .

[5]  Jan Van den Bussche,et al.  Undecidability of satisfiability in the algebra of finite binary relations with union, composition, and difference , 2014, ArXiv.

[6]  Carsten Lutz,et al.  PDL with intersection and converse: satisfiability and infinite-state model checking , 2009, The Journal of Symbolic Logic.

[7]  Johan van Benthem,et al.  Program Constructions that are Safe for Bisimulation , 1998, Stud Logica.

[8]  Marc Gyssens,et al.  A Study of a Positive Fragment of Path Queries: Expressiveness, Normal Form and Minimization , 2009, Comput. J..

[9]  Claudio Gutierrez,et al.  Survey of graph database models , 2008, CSUR.

[10]  Jan Van den Bussche,et al.  Relative expressive power of navigational querying on graphs using transitive closure , 2015, Log. J. IGPL.

[11]  Kousha Etessami,et al.  First-Order Logic with Two Variables and Unary Temporal Logic , 2002, Inf. Comput..

[12]  Dan Suciu,et al.  Data on the Web: From Relations to Semistructured Data and XML , 1999 .

[13]  Pablo Barceló Baeza Querying graph databases , 2013, PODS 2013.

[14]  Alfred Tarski,et al.  Relational selves as self-affirmational resources , 2008 .

[15]  M. de Rijke,et al.  Semantic characterizations of navigational XPath , 2005, SGMD.

[16]  Alin Deutsch,et al.  Optimization Properties for Classes of Conjunctive Regular Path Queries , 2001, DBPL.

[17]  Maarten Marx,et al.  Multi-dimensional modal logic , 1997, Applied logic series.

[18]  Jörg Flum,et al.  Finite model theory , 1995, Perspectives in Mathematical Logic.

[19]  Yde Venema,et al.  Dynamic Logic by David Harel, Dexter Kozen and Jerzy Tiuryn. The MIT Press, Cambridge, Massachusetts. Hardback: ISBN 0–262–08289–6, $50, xv + 459 pages , 2002, Theory and Practice of Logic Programming.

[20]  Nikos Mamoulis,et al.  Efficient processing of joins on set-valued attributes , 2003, SIGMOD '03.

[21]  Pablo Barceló,et al.  A Practical Query Language for Graph DBs , 2013, AMW.

[22]  Vaughan R. Pratt,et al.  On the Syllogism: IV; and on the Logic of Relations , 2022 .

[23]  B. C. Brookes,et al.  Information Sciences , 2020, Cognitive Skills You Need for the 21st Century.

[24]  Serge Abiteboul,et al.  Foundations of Databases , 1994 .

[25]  Pablo Barceló,et al.  Querying graph databases , 2013, PODS '13.

[26]  Tim Berners-Lee,et al.  Linked Data - The Story So Far , 2009, Int. J. Semantic Web Inf. Syst..

[27]  Maarten Marx,et al.  Conditional XPath , 2005, TODS.

[28]  Roger D. Maddux,et al.  Relation Algebras , 1997, Relational Methods in Computer Science.

[29]  Robert E. Tarjan,et al.  Three Partition Refinement Algorithms , 1987, SIAM J. Comput..

[30]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[31]  Jan Van den Bussche,et al.  The impact of transitive closure on the expressiveness of navigational query languages on unlabeled graphs , 2013, Annals of Mathematics and Artificial Intelligence.

[32]  Alberto O. Mendelzon,et al.  Database techniques for the World-Wide Web: a survey , 1998, SGMD.

[33]  Wim Martens,et al.  Querying graph databases with XPath , 2013, ICDT '13.

[34]  Nicolás Marín,et al.  Review of Data on the Web: from relational to semistructured data and XML by Serge Abiteboul, Peter Buneman, and Dan Suciu. Morgan Kaufmann 1999. , 2003, SGMD.

[35]  Diego Calvanese,et al.  Containment of Conjunctive Regular Path Queries with Inverse , 2000, KR.

[36]  Marcelo Arenas,et al.  nSPARQL: A navigational language for RDF , 2010, J. Web Semant..

[37]  Martin Otto,et al.  Model theoretic methods for fragments of FO and special classes of (finite) structures , 2011, Finite and Algorithmic Model Theory.

[38]  David Maier,et al.  Principles of dataspace systems , 2006, PODS '06.

[39]  Valentin Goranko,et al.  Model theory of modal logic , 2007, Handbook of Modal Logic.

[40]  David Maier,et al.  From databases to dataspaces: a new abstraction for information management , 2005, SGMD.

[41]  Steven J. DeRose,et al.  XML Path Language (XPath) Version 1.0 , 1999 .

[42]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[43]  Gabriel M. Kuper,et al.  Structural properties of XPath fragments , 2003, Theor. Comput. Sci..

[44]  I. Hodkinson,et al.  Relation Algebras by Games , 2002 .

[45]  Frank Wolter,et al.  Handbook of Modal Logic , 2007, Studies in logic and practical reasoning.

[46]  Richard Spencer-Smith,et al.  Modal Logic , 2007 .

[47]  Jan Van den Bussche,et al.  Similarity and bisimilarity notions appropriate for characterizing indistinguishability in fragments of the calculus of relations , 2012, J. Log. Comput..