Introduction to Automated Drug Delivery in Clinical Anesthesia

Control technology has been applied to a wide variety of industrial and domestic applications to improve performance, safety and efficiency. Anesthesia, a critical aspect of clinical and emergency medicine, has not yet benefited from such technological advances. The lack of dedicated feedback sensors, and the large inter- and intra-patient variability in terms of patients’ response to drug administration, have seriously limited the effectiveness and reliability of closed-loop controllers in clinical settings. However, recent advances in sensing devices, along with robust nonlinear control theories, have generated new hopes that the gap between manual and automated control of anesthesia can finally be bridged. This paper addresses the pharmacological principles of clinical anesthesia in a context appropriate for control engineers. Concepts and terminology, monitoring issues, as well as drug dose vs. response relationships, are covered.

[1]  G. Plourde,et al.  Auditory processing during isoflurane anesthesia: A study with an implicit memory task and auditory evoked potentials , 1993 .

[2]  T. Gray,et al.  Role of Apnoea in Anaesthesia for Major Surgery , 1952, British medical journal.

[3]  M. Mahla,et al.  Advancing Age and Deeper Intraoperative Anesthetic Levels Are Associated with Higher First Year Death Rates: [2002][A-1097] , 2002 .

[4]  J. Schüttler,et al.  Feedback Control of Intravenous Anesthetics by Quantitative EEG , 1995 .

[5]  Thomas W. Schnider,et al.  Influence of age and gender on the pharmacokinetics and pharmacodynamics of remifentanil. I. Model development , 1997 .

[6]  Albert Wauquier,et al.  Monitoring Depth of Anesthesia with the EEG , 1986 .

[7]  S. Kreuer,et al.  Narcotrend Monitoring Allows Faster Emergence and a Reduction of Drug Consumption in Propofol–Remifentanil Anesthesia , 2003, Anesthesiology.

[8]  J. Vuyk Clinical interpretation of pharmacokinetic and pharmacodynamic propofol-opioid interactions. , 2001, Acta anaesthesiologica Belgica.

[9]  E. Eger,et al.  Determination and applications of MAC. , 1980, Anesthesiology.

[10]  G. Plourde,et al.  The auditory steady state response during sufentanil anaesthesia. , 1991, British journal of anaesthesia.

[11]  C Prys-Roberts,et al.  Anaesthesia: a practical or impractical construct? , 1987, British Journal of Anaesthesia.

[12]  I J Rampil,et al.  Automated anesthesia: fact or fantasy? , 2001, Anesthesiology.

[13]  Rolf Wymann,et al.  A New Closed-Loop Control System for Isoflurane Using Bispectral Index Outperforms Manual Control , 2004, Anesthesiology.

[14]  REDUCTION OF PROPOFOL Cp50 BY FENTANYL , 1992 .

[15]  I. Kissin,et al.  Depth of Anesthesia and Bispectral Index Monitoring , 2000, Anesthesia and analgesia.

[16]  I. Rampil A Primer for EEG Signal Processing in Anesthesia , 1998, Anesthesiology.

[17]  M. Morgan,et al.  Total intravenous anaesthesia , 1983, Anaesthesia.

[18]  M. Takashina,et al.  Practical Issues in Bispectral Analysis of Electroencephalographic Signals , 2001, Anesthesia and analgesia.

[19]  Peter S. Sebel,et al.  ACCURACY OF EEG IN PREDICTING MOVEMENT AT INCISION DURING ISOFLURANE ANESTHESIA , 1991 .

[20]  C. Lennmarken,et al.  Victims of awareness , 2002, Acta anaesthesiologica Scandinavica.

[21]  P. Sebel,et al.  Effects of anaesthesia on the EEG — bispectral analysis correlates with movement , 1994 .

[22]  Philip E. Ross Holy grail: customized medicine , 2004 .

[23]  Malou M-Louise Haine,et al.  De Smet L. , 1986 .

[24]  Peter S. Sebel,et al.  Bispectral Index Monitoring Allows Faster Emergence and Improved Recovery from Propofol, Alfentanil, and Nitrous Oxide Anesthesia , 1997 .

[25]  S. Henneberg,et al.  Autoregressive Modeling with Exogenous Input of Middle-Latency Auditory-Evoked Potentials to Measure Rapid Changes in Depth of Anesthesia , 1996, Methods of Information in Medicine.

[26]  Peter S. Sebel,et al.  EEG BISPECTRUM PREDICTS MOVEMENT AT INCISION DURING ISOFLURANE OR PROPOFOL ANESTHESIA , 1992 .

[27]  Steven L Shafer,et al.  Using the Time of Maximum Effect Site Concentration to Combine Pharmacokinetics and Pharmacodynamics , 2003, Anesthesiology.

[28]  M. Struys,et al.  Comparison of Closed-loop Controlled Administration of Propofol Using Bispectral Index as the Controlled Variable versus “Standard Practice” Controlled Administration , 2001, Anesthesiology.

[29]  A. Zbinden,et al.  Different benefit of bispectal index (BIS™) in desflurane and propofol anesthesia , 2003, Acta anaesthesiologica Scandinavica.

[30]  Juliana Barr,et al.  Remifentanil Versus Alfentanil: Comparative Pharmacokinetics and Pharmacodynamics in Healthy Adult Male Volunteers , 1996, Anesthesiology.

[31]  J. Boldt,et al.  Cost analysis of target-controlled infusion-based anesthesia compared with standard anesthesia regimens. , 1999, Anesthesia and analgesia.

[32]  H. Mantzaridis,et al.  CLOSED-LOOP CONTROL OF ANESTHESIA , 1992 .

[33]  C. Hernández-Bernal,et al.  Utilidad del índice biespectral (BIS) en la reducción del costo de fármacos para la anestesia , 2003 .

[34]  Lewis B. Sheiner,et al.  Simultaneous modeling of pharmacokinetics and pharmacodynamics: Application to d‐tubocurarine , 1979 .

[35]  Nassib G. Chamoun,et al.  BISPECTRAL ANALYSIS OF EEG MAY PREDICT ANESTHETIC DEPTH DURING NARCOTIC INDUCTION , 1991 .

[36]  S. Shafer,et al.  The Influence of Method of Administration and Covariates on the Pharmacokinetics of Propofol in Adult Volunteers , 1998, Anesthesiology.

[37]  Tatjana Zikov Monitoring the anesthetic-induced unconsciousness (hypnosis) using wavelet analysis of the electroencephalogram , 2002 .

[38]  Jeffrey C. Sigl,et al.  Anesthetic Management and One-Year Mortality After Noncardiac Surgery , 2005, Anesthesia and analgesia.

[39]  Derek A. Linkens,et al.  Estimation of Latency Changes and Relative Amplitudes in Somatosensory Evoked Potentials Using Wavelets and Regression , 1999, Comput. Biomed. Res..

[40]  E Olofsen,et al.  Propofol Anesthesia and Rational Opioid Selection: Determination of Optimal EC50‐EC95 Propofol‐Opioid Concentrations that Assure Adequate Anesthesia and a Rapid Return of Consciousness , 1997, Anesthesiology.

[41]  D. A. Davis,et al.  EEGs during High‐Dose Fentanyl‐, Sufentanil‐, or Morphine‐Oxygen Anesthesia , 1984, Anesthesia and analgesia.

[42]  H Schwilden,et al.  Quantitative EEG analysis during anaesthesia with isoflurane in nitrous oxide at 1.3 and 1.5 MAC. , 1987, British journal of anaesthesia.

[43]  N. T. Smith,et al.  SPECTRAL EDGE FREQUENCY — A NEW CORRELATE OF ANESTHETIC DEPTH , 1980 .

[44]  J. Proost,et al.  Predictability of Processed Electroencephalography Effects on the Basis of Pharmacokinetic–Pharmacodynamic Modeling during Repeated Propofol Infusions in Patients with Extradural Analgesia , 2001, Anesthesiology.

[45]  S L Shafer,et al.  A comparison of spectral edge, delta power, and bispectral index as EEG measures of alfentanil, propofol, and midazolam drug effect , 1997, Clinical pharmacology and therapeutics.

[46]  J. Bronzino,et al.  Bispectral analysis of the rat EEG during various vigilance states , 1989, IEEE Transactions on Biomedical Engineering.

[47]  Population pharmacokinetics of propofol for target-controlled infusion (TCI) in the elderly. , 2000, Anesthesiology.

[48]  B. Kolk,et al.  Awareness under anesthesia and the development of posttraumatic stress disorder. , 2001, General hospital psychiatry.

[49]  Guy A. Dumont,et al.  Estimation of the anesthetic depth using wavelet analysis of electroencephalogram , 2001, 2001 Conference Proceedings of the 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[50]  S L Shafer,et al.  Response Surface Model for Anesthetic Drug Interactions , 2000, Anesthesiology.

[51]  P. Sebel,et al.  Reduction of Isoflurane Minimal Alveolar Concentration by Remifentanil , 1996, Anesthesiology.

[52]  Guy A. Dumont,et al.  Clinical anesthesia and control engineering: Terminology, concepts and issues , 2003, 2003 European Control Conference (ECC).

[53]  Guy Albert Dumont,et al.  Quantifying cortical activity during general anesthesia using wavelet analysis , 2006, IEEE Transactions on Biomedical Engineering.

[54]  M. Huzmezan,et al.  Quantifying uncertainty bounds in anesthetic PKPD models , 2004, The 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[55]  Gray Tc,et al.  Role of Apnoea in Anaesthesia for Major Surgery , 1952 .

[56]  N. Morton,et al.  Pharmacokinetic model driven infusion of propofol in children. , 1991, British journal of anaesthesia.

[57]  H. Schwilden,et al.  Closed-loop feedback control of propofol anaesthesia by quantitative EEG analysis in humans. , 1989, British journal of anaesthesia.

[58]  S Cerutti,et al.  On-line Analysis of AEP and EEG for Monitoring Depth of Anaesthesia , 1997, Methods of Information in Medicine.

[59]  I. Smith,et al.  Cost considerations in the use of anaesthetic drugs , 2002, PharmacoEconomics.

[60]  T. Kazama,et al.  Comparison of the effect-site k(eO)s of propofol for blood pressure and EEG bispectral index in elderly and younger patients. , 1999, Anesthesiology.

[61]  J. Boldt,et al.  Cost analysis of target-controlled infusion-based anesthesia compared with standard anesthesia regimens. , 1999 .

[62]  I J Rampil,et al.  Monitoring depth of anesthesia , 2001, Current opinion in anaesthesiology.

[63]  K. Leslie,et al.  For Personal Use. Only Reproduce with Permission from the Lancet , 2022 .

[64]  L B Sheiner,et al.  Simultaneous modeling of pharmacokinetics and pharmacodynamics: application to d-tubocurarine. , 1980, Clinical pharmacology and therapeutics.

[65]  David J. Hermann,et al.  The Pharmacokinetics of the New Short‐acting Opioid Remifentanil (GI87084B) in Healthy Adult Male Volunteers , 1993, Anesthesiology.

[66]  C J Pomfrett,et al.  Heart rate variability, BIS and 'depth of anaesthesia'. , 1999, British journal of anaesthesia.

[67]  Stephane Bibian,et al.  Automation in clinical anesthesia , 2006 .

[68]  A. Yli-Hankala,et al.  Description of the EntropyTM algorithm as applied in the Datex-Ohmeda S / 5 TM Entropy Module , 2004 .

[69]  A. Yli-Hankala,et al.  Time‐frequency balanced spectral entropy as a measure of anesthetic drug effect in central nervous system during sevoflurane, propofol, and thiopental anesthesia , 2004, Acta anaesthesiologica Scandinavica.

[70]  C. Rosow,et al.  Bispectral index monitoring , 2001 .

[71]  J Schüttler,et al.  Population Pharmacokinetics of Propofol: A Multicenter Study , 2000, Anesthesiology.

[72]  James C. Scott,et al.  Electroencephalographic quantitation of opioid effect: comparative pharmacodynamics of fentanyl and sufentanil. , 1991, Anesthesiology.

[73]  E. Gepts,et al.  Disposition of Propofol Administered as Constant Rate Intravenous Infusions in Humans , 1987, Anesthesia and analgesia.