Solving the Dirichlet problem for Navier–Stokes equations by probabilistic approach

We construct a number of layer methods for Navier-Stokes equations (NSEs) with no-slip boundary conditions. The methods are obtained using probabilistic representations of solutions to NSEs and exploiting ideas of the weak sense numerical integration of stochastic differential equations. Despite their probabilistic nature, the proposed methods are nevertheless deterministic.

[1]  G. N. Milstein,et al.  Numerical algorithms for semilinear parabolic equations with small parameter based on approximation of stochastic equations , 2000, Math. Comput..

[2]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[3]  George Em Karniadakis,et al.  A semi-Lagrangian high-order method for Navier-Stokes equations , 2001 .

[4]  Charles S. Peskin,et al.  A random-walk interpretation of the incompressible navier-stokes equations , 1985 .

[5]  F. Flandoli,et al.  A PROBABILISTIC REPRESENTATION FOR THE VORTICITY OF A THREE-DIMENSIONAL VISCOUS FLUID AND FOR GENERAL SYSTEMS OF PARABOLIC EQUATIONS , 2005, Proceedings of the Edinburgh Mathematical Society.

[6]  R. Peyret Spectral Methods for Incompressible Viscous Flow , 2002 .

[7]  Roger Temam,et al.  Navier–Stokes Equations and Nonlinear Functional Analysis: Second Edition , 1995 .

[8]  G. N. Milstein,et al.  An approximation method for Navier–Stokes equations based on probabilistic approach , 2003 .

[9]  M. V. Tretyakov,et al.  Numerical solution of the Dirichlet problem for nonlinear parabolic equations by a probabilistic approach , 2001 .

[10]  J. Marsden,et al.  A mathematical introduction to fluid mechanics , 1979 .

[11]  P. Wesseling Principles of Computational Fluid Dynamics , 2000 .

[12]  G. N. Milstein,et al.  The probability approach to numerical solution of nonlinear parabolic equations , 2002 .

[13]  A probabilistic representation for the vorticity of a 3D viscous fluid and for general systems of parabolic equations , 2003, math/0306075.

[14]  C. Fletcher Computational techniques for fluid dynamics , 1992 .

[15]  M. V. Tretyakov,et al.  Stochastic Numerics for Mathematical Physics , 2004, Scientific Computation.

[16]  A. Majda,et al.  Vorticity and incompressible flow , 2001 .

[17]  R. Temam,et al.  Navier-Stokes equations: theory and numerical analysis: R. Teman North-Holland, Amsterdam and New York. 1977. 454 pp. US $45.00 , 1978 .

[18]  R. Temam Navier-Stokes Equations and Nonlinear Functional Analysis , 1987 .

[19]  Michael V. Tretyakov,et al.  Discretization of forward–backward stochastic differential equations and related quasi-linear parabolic equations , 2007 .

[20]  O. Pironneau On the transport-diffusion algorithm and its applications to the Navier-Stokes equations , 1982 .

[21]  G. N. Milstein,et al.  Numerical Algorithms for Forward-Backward Stochastic Differential Equations , 2006, SIAM J. Sci. Comput..

[22]  Thierry Dubois,et al.  Dynamic multilevel methods and the numerical simulation of turbulence , 1999 .

[23]  Roger Temam,et al.  On the theory and numerical analysis of the Navier-Stokes equations , 1973 .

[24]  André Robert,et al.  A stable numerical integration scheme for the primitive meteorological equations , 1981 .

[25]  M. V. Tretyakov,et al.  The Simplest Random Walks for the Dirichlet Problem , 2003 .

[26]  T. A. Zang,et al.  Spectral methods for fluid dynamics , 1987 .

[27]  R. A. Silverman,et al.  The Mathematical Theory of Viscous Incompressible Flow , 1972 .