Effects of Ultrasonication on the Conformational, Microstructural, and Antioxidant Properties of Konjac Glucomannan

This study aims to evaluate the effects of ultrasonication (US) on the conformational, microstructural, and antioxidant properties of konjac glucomannan (KGM). US treatment with a 20-kHz and 750-W ultrasonic processor at 60% amplitude was applied for partial degradation of KGM with an average molecular weight (MW) of 823.4 kDa. Results indicated that the US treatment caused dramatic reduction in the MW, apparent viscosity, hydrodynamic radius, and z-average mean radius of gyration. The flexibility of chain conformation of native KGM was slightly increased during the US treatment. According to electronic microscopic imaging, the compact, smooth, and orderly fibrous strings formed by KGM were changed to amorphous, porous flakes and globular particles after US treatment. KGM and its US-treated fractions showed moderate radical-scavenging and ferric-reducing antioxidant activity. US degradation of KGM affected these activities either positively or negatively, depending on the US treatment period. In summary, ultrasonic degradation of KGM caused changes in its conformation characteristics, microstructure, and antioxidant activities.

[1]  Lawrence A Leiter,et al.  A systematic review and meta-analysis of randomized controlled trials of the effect of konjac glucomannan, a viscous soluble fiber, on LDL cholesterol and the new lipid targets non-HDL cholesterol and apolipoprotein B. , 2017, The American journal of clinical nutrition.

[2]  M. Xie,et al.  Effect of calcium on solution and conformational characteristics of polysaccharide from seeds of Plantago asiatica L. , 2015, Carbohydrate polymers.

[3]  Jingkun Yan,et al.  Ultrasonic effects on the degradation kinetics, preliminary characterization and antioxidant activities of polysaccharides from Phellinus linteus mycelia. , 2016, Ultrasonics sonochemistry.

[4]  Yanbo Wang,et al.  Effect of Ultrasonic Degradation on In Vitro Antioxidant Activity of Polysaccharides from Porphyra yezoensis (Rhodophyta) , 2008 .

[5]  R. Tester,et al.  Effect of depolymerised konjac glucomannan on wound healing , 2015 .

[6]  G. Schmid Zur Kinetik der Ultraschalldepolymerisation , 1940 .

[7]  P. Williams,et al.  Physicochemical characterization of konjac glucomannan. , 2005, Biomacromolecules.

[8]  Ka-Chai Siu,et al.  Bifidogenic effects of Cordyceps sinensis fungal exopolysaccharide and konjac glucomannan after ultrasound and acid degradation. , 2018, International journal of biological macromolecules.

[9]  Haile Ma,et al.  Ultrasound enhanced production and antioxidant activity of polysaccharides from mycelial fermentation of Phellinus igniarius. , 2014, Carbohydrate polymers.

[10]  Yingnan Yang,et al.  Effect of ultrasonic extraction conditions on antioxidative and immunomodulatory activities of a Ganoderma lucidum polysaccharide originated from fermented soybean curd residue. , 2014, Food chemistry.

[11]  P. L. Dung,et al.  Characterization of glucomannan from some Amorphophallus species in Vietnam , 2010 .

[12]  M. Bohdanecký New method for estimating the parameters of the wormlike chain model from the intrinsic viscosity of stiff-chain polymers , 1983 .

[13]  M. Maeda,et al.  Detailed Examination of the Branched Structure of Konjac Glucomannan , 1980 .

[14]  Mingzhu Liu,et al.  Synthesis, optimization and characterization of acetylated corn starch with the high degree of substitution. , 2013, International journal of biological macromolecules.

[15]  F. Zhu Modifications of konjac glucomannan for diverse applications. , 2018, Food chemistry.

[16]  H. Szajewska,et al.  The effect of glucomannan on body weight in overweight or obese children and adults: a systematic review of randomized controlled trials. , 2015, Nutrition.

[17]  S. Harding,et al.  A novel global hydrodynamic analysis of the molecular flexibility of the dietary fibre polysaccharide konjac glucomannan , 2009 .

[18]  S. Behera,et al.  Konjac glucomannan, a promising polysaccharide of Amorphophallus konjac K. Koch in health care. , 2016, International journal of biological macromolecules.

[19]  O. Kratky,et al.  Röntgenuntersuchung gelöster Fadenmoleküle , 1949 .

[20]  A. Borderías,et al.  Influence of measurement temperature on the rheological and microstructural properties of glucomannan gels with different thermal histories , 2012 .

[21]  Shiguo Chen,et al.  Ultrasound effects on the degradation kinetics, structure, and antioxidant activity of sea cucumber fucoidan. , 2014, Journal of agricultural and food chemistry.

[22]  Hiroshi Suzuki,et al.  Isolation and Characterization of Oligosaccharides from an Enzymic Hydrolysate of Konjac Glucomannan , 1975 .

[23]  Takashi Yoshida,et al.  Sulfation and biological activities of konjac glucomannan. , 2013, Carbohydrate polymers.

[24]  Hsiao‐ling Chen,et al.  Unhydrolyzed and hydrolyzed konjac glucomannans modulated cecal and fecal microflora in Balb/c mice. , 2005, Nutrition.

[25]  Kazuko. Shimada,et al.  ANTIOXIDATIVE PROPERTIES OF XANTHONE ON THE AUTO OXIDATION OF SOYBEAN IN CYLCODEXTRIN EMULSION , 1992 .

[26]  Anna Suurnäkki,et al.  Carbohydrate analysis of plant materials with uronic acid-containing polysaccharides–A comparison between different hydrolysis and subsequent chromatographic analytical techniques , 2009 .

[27]  J. Kennedy,et al.  Characterization of konjac glucomannan-gellan gum blend films and their suitability for release of nisin incorporated therein , 2007 .

[28]  S. Charoenrein,et al.  Physicochemical properties of konjac glucomannan extracted from konjac flour by a simple centrifugation process , 2011 .

[29]  D. Hou,et al.  Molecular weight kinetics and chain scission models for dextran polymers during ultrasonic degradation. , 2017, Carbohydrate polymers.

[30]  A. Grönroos,et al.  Ultrasonic degradation of aqueous carboxymethylcellulose: effect of viscosity, molecular mass, and concentration. , 2008, Ultrasonics sonochemistry.

[31]  Man Singh,et al.  Potential effect of ultrasound on carbohydrates. , 2015, Carbohydrate research.

[32]  K. Shimada,et al.  Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion , 1992 .

[33]  Yuan-ming Sun,et al.  Physicochemical properties and cellular protection against oxidation of degraded Konjac glucomannan prepared by γ-irradiation. , 2017, Food chemistry.

[34]  Taihua Mu,et al.  Ultrasonic Modification of Selected Polysaccharides-Review , 2015 .

[35]  Bin Li,et al.  Ultrasonic degradation kinetics and rheological profiles of a food polysaccharide (konjac glucomannan) in water , 2017 .

[36]  K. Hatanaka,et al.  Constitution of konjac glucomannan: chemical analysis and 13C NMR spectroscopy , 2003 .

[37]  Quevedo Amaya,et al.  Caracterización fisiológica y bioquímica de cuatro genotipos de algodón (Gossypium hirsutum L.) en condiciones de déficit hídrico , 2020 .

[38]  B. Hinterstoisser,et al.  Two-Dimensional Fourier Transform Infrared Spectroscopy Applied to Cellulose and Paper , 2004 .

[39]  P. Pirkonen,et al.  Ultrasonic depolymerization of aqueous carboxymethylcellulose. , 2004, Ultrasonics sonochemistry.

[40]  B. Xie,et al.  Advance in the applications of konjac glucomannan and its derivatives , 2005 .

[41]  D. Hayes,et al.  Efficient reduction of chitosan molecular weight by high-intensity ultrasound: underlying mechanism and effect of process parameters. , 2008, Journal of agricultural and food chemistry.

[42]  Tian Ding,et al.  Ultrasound effects on the degradation kinetics, structure and rheological properties of apple pectin. , 2013, Ultrasonics sonochemistry.

[43]  W. Xu,et al.  A simple and feasible approach to purify konjac glucomannan from konjac flour--temperature effect. , 2014, Food Chemistry.

[44]  S. Cui Food Carbohydrates : Chemistry, Physical Properties, and Applications , 2005 .

[45]  G. Phillips,et al.  Study on Dendrobium officinale O-acetyl-glucomannan (Dendronan®): Part I. Extraction, purification, and partial structural characterization , 2014 .

[46]  S. Simal,et al.  Effects of heat treatment and dehydration on bioactive polysaccharide acemannan and cell wall polymers from Aloe barbadensis Miller , 2003 .

[47]  P. Gogate,et al.  Depolymerization using sonochemical reactors: A critical review. , 2015, Ultrasonics sonochemistry.

[48]  M. M. Bradford A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. , 1976, Analytical biochemistry.

[49]  T. Kamata,et al.  Molecular Weight and Intrinsic Viscosity of Konjac Gluco-mannan , 1978 .

[50]  D. Picout,et al.  On the Mark–Houwink parameters for galactomannans , 2007 .

[51]  G. Madras,et al.  Continuous distribution kinetics for ultrasonic degradation of polymers , 2000 .

[52]  Jingkun Yan,et al.  Effects of ultrasound on molecular properties, structure, chain conformation and degradation kinetics of carboxylic curdlan. , 2015, Carbohydrate polymers.

[53]  F. Smith,et al.  COLORIMETRIC METHOD FOR DETER-MINATION OF SUGAR AND RELATED SUBSTANCE , 1956 .

[54]  J. Bordado,et al.  Sonication as a foremost tool to improve cork liquefaction. , 2015 .

[55]  Huailiang Xu,et al.  Immune responses to Aeromonas hydrophila infection in Schizothorax prenanti fed with oxidized konjac glucomannan and its acidolysis products. , 2016, Fish & shellfish immunology.

[56]  Hao Zhang,et al.  Identification, quantification and antioxidant activity of acylated flavonol glycosides from sea buckthorn (Hippophae rhamnoides ssp. sinensis). , 2013, Food chemistry.

[57]  Jian-yong Wu,et al.  Protective effects of natural and partially degraded konjac glucomannan on Bifidobacteria against antibiotic damage. , 2018, Carbohydrate polymers.

[58]  W. Kerr,et al.  Physicochemical properties of extrusion-modified konjac glucomannan , 2012 .