On the Numerical Solution of the Elliptic Monge—Ampère Equation in Dimension Two: A Least-Squares Approach

[1]  R. Glowinski Finite element methods for incompressible viscous flow , 2003 .

[2]  Vladimir Oliker,et al.  On the numerical solution of the equation $$\frac{{\partial ^2 z}}{{\partial x^2 }}\frac{{\partial ^2 z}}{{\partial y^2 }} - \left( {\frac{{\partial ^2 z}}{{\partial x\partial y}}} \right)^2 = f$$ and its discretizations, I , 1989 .

[3]  Yann Brenier,et al.  A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem , 2000, Numerische Mathematik.

[4]  J. Urbas Regularity of generalized solutions of Monge-Ampère equations , 1988 .

[5]  P. Lions,et al.  User’s guide to viscosity solutions of second order partial differential equations , 1992, math/9207212.

[6]  Roland Glowinski,et al.  Numerical solution of the two-dimensional elliptic Monge–Ampère equation with Dirichlet boundary conditions: a least-squares approach , 2004 .

[7]  Roland Glowinski,et al.  Numerical methods for fully nonlinear elliptic equations of the Monge-Ampère type , 2006 .

[8]  Thierry Aubin,et al.  Nonlinear analysis on manifolds, Monge-Ampère equations , 1982 .

[9]  Roland Glowinski,et al.  On the numerical solution of a two-dimensional Pucci's equation with dirichlet boundary conditions : a least-squares approach , 2005 .

[10]  L. Caffarelli,et al.  Fully Nonlinear Elliptic Equations , 1995 .

[11]  R. Jensen The maximum principle for viscosity solutions of fully nonlinear second order partial differential equations , 1988 .

[12]  R. Courant,et al.  Methods of Mathematical Physics , 1962 .

[13]  Roland Glowinski,et al.  Numerical solution of the two-dimensional elliptic Monge-Ampère equation with Dirichlet boundary conditions: an augmented Lagrangian approach , 2003 .

[14]  R. Glowinski,et al.  Numerical Methods for Nonlinear Variational Problems , 1985 .

[15]  O. Pironneau Finite Element Methods for Fluids , 1990 .

[16]  John E. Dennis,et al.  Numerical methods for unconstrained optimization and nonlinear equations , 1983, Prentice Hall series in computational mathematics.

[17]  R. Glowinski,et al.  An augmented Lagrangian approach to the numerical solution of the Dirichlet problem for the elliptic Monge-Ampère equation in two dimensions. , 2006 .

[18]  L. D. Prussner,et al.  On the numerical solution of the equation ∂2z/∂x2 ∂2z/∂y2−(∂2z/∂x∂y)2=f and its discretizations. I , 1988 .

[19]  D. Gilbarg,et al.  Elliptic Partial Differential Equa-tions of Second Order , 1977 .

[20]  Mario Milman,et al.  Monge Ampère equation : applications to geometry and optimization : NSF-CBMS Conference on the Monge Ampère Equation : Applications to Geometry and Optimization, July 9-13, 1997, Florida Atlantic University , 1999 .

[21]  R. Glowinski,et al.  Numerical methods for the first biharmonic equation and for the two-dimensional Stokes problem , 1977 .

[22]  Roland Glowinski,et al.  Iterative solution of the stream function-vorticity formulation of the stokes problem, applications to the numerical simulation of incompressible viscous flow , 1991 .