Filters for anisotropic wavelet decompositions
暂无分享,去创建一个
[1] Martin Vetterli,et al. A computational theory of laurent polynomial rings and multidimensional fir systems , 1999 .
[2] R. Jia. Subdivision Schemes in L p Spaces , 1995 .
[3] C. Chui,et al. Construction of Compactly Supported Symmetric and Antisymmetric Orthonormal Wavelets with Scale = 3 , 1995 .
[4] Gitta Kutyniok,et al. Adaptive Directional Subdivision Schemes and Shearlet Multiresolution Analysis , 2007, SIAM J. Math. Anal..
[5] Mariantonia Cotronei,et al. An anisotropic directional subdivision and multiresolution scheme , 2015, Adv. Comput. Math..
[6] Peter Niels Heller,et al. Rank M Wavelets with N Vanishing Moments , 1995, SIAM J. Matrix Anal. Appl..
[7] B. Han. Compactly supported tight wavelet frames and orthonormal wavelets of exponential decay with a general dilation matrix , 2003 .
[8] Tomas Sauer. Shearlet Multiresolution and Multiple Refinement , 2012 .
[9] R. Bellman,et al. A Survey of Matrix Theory and Matrix Inequalities , 1965 .
[10] Marcin Bownik,et al. Tight frames of multidimensional wavelets , 1997 .
[11] M. Marcus,et al. A Survey of Matrix Theory and Matrix Inequalities , 1965 .
[12] Rong-Qing Jia,et al. Subdivision schemes inLp spaces , 1995, Adv. Comput. Math..
[13] C. Micchelli,et al. On vector subdivision , 1998 .
[14] C. Micchelli,et al. Biorthogonal Wavelet Expansions , 1997 .
[15] Jelena Kovacevic,et al. Wavelets and Subband Coding , 2013, Prentice Hall Signal Processing Series.
[16] Nada Sissouno,et al. Level-Dependent Interpolatory Hermite Subdivision Schemes and Wavelets , 2018, Constructive Approximation.
[17] Stéphane Mallat,et al. A Wavelet Tour of Signal Processing - The Sparse Way, 3rd Edition , 2008 .
[18] H. Park,et al. An Algorithmic Proof of Suslin′s Stability Theorem for Polynomial Rings , 1994, alg-geom/9405003.
[19] Charles A. Micchelli,et al. Regularity of multiwavelets , 1997, Adv. Comput. Math..