Polar Codes' Simplicity, Random Codes' Durability

Over any discrete memoryless channel, we build codes such that: for one, their block error probabilities and code rates scale like random codes'; and for two, their encoding and decoding complexities scale like polar codes'. Quantitatively, for any constants $\pi,\rho>0$ such that $\pi+2\rho 1$, no such codes exist for generic channels regardless of alphabet and complexity.

[1]  Jungwon Lee,et al.  Relaxed Polar Codes , 2017, IEEE Transactions on Information Theory.

[2]  Emmanuel Abbe,et al.  Randomness and Dependencies Extraction via Polarization, With Applications to Slepian–Wolf Coding and Secrecy , 2011, IEEE Transactions on Information Theory.

[3]  Amir Dembo,et al.  Large Deviations Techniques and Applications , 1998 .

[4]  Robert G. Gallager,et al.  A simple derivation of the coding theorem and some applications , 1965, IEEE Trans. Inf. Theory.

[5]  Meir Feder,et al.  The Random Coding Bound Is Tight for the Average Linear Code or Lattice , 2013, IEEE Transactions on Information Theory.

[6]  Simon Litsyn,et al.  Mixed-Kernels Constructions of Polar Codes , 2016, IEEE Journal on Selected Areas in Communications.

[7]  Sergio Verdú,et al.  Fixed-Length Lossy Compression in the Finite Blocklength Regime , 2011, IEEE Transactions on Information Theory.

[8]  Eren Sasoglu Polar Coding Theorems for Discrete Systems , 2011 .

[9]  Santhosh Kumar,et al.  Reed–Muller Codes Achieve Capacity on Erasure Channels , 2015, IEEE Transactions on Information Theory.

[10]  Emre Telatar,et al.  Polar Codes for the $m$-User Multiple Access Channel , 2012, IEEE Transactions on Information Theory.

[11]  Aaron B. Wagner,et al.  Moderate deviation analysis of channel coding: Discrete memoryless case , 2010, 2010 IEEE International Symposium on Information Theory.

[12]  Rajai Nasser,et al.  Polar Codes for Arbitrary DMCs and Arbitrary MACs , 2016, IEEE Transactions on Information Theory.

[13]  Arman Fazeli,et al.  Binary Linear Codes with Optimal Scaling and Quasi-Linear Complexity , 2017, ArXiv.

[14]  Vincent Yan Fu Tan,et al.  Erasure and undetected error probabilities in the moderate deviations regime , 2015, 2015 IEEE International Symposium on Information Theory (ISIT).

[15]  Rüdiger L. Urbanke,et al.  Finite-Length Scaling for Polar Codes , 2013, IEEE Transactions on Information Theory.

[16]  A. D. Wyner,et al.  The wire-tap channel , 1975, The Bell System Technical Journal.

[17]  M. Beck,et al.  A First Course in Complex Analysis , 2014 .

[18]  Alexander Barg,et al.  Polar codes for q-ary channels, q =2r , 2011, 2012 IEEE International Symposium on Information Theory Proceedings.

[19]  Alexander Barg,et al.  Polar codes using dynamic kernels , 2015, 2015 IEEE International Symposium on Information Theory (ISIT).

[20]  Venkatesan Guruswami,et al.  Arikan meets Shannon: Polar codes with near-optimal convergence to channel capacity , 2022, IEEE Transactions on Information Theory.

[21]  Arman Fazeli,et al.  On the scaling exponent of binary polarization kernels , 2014, 2014 52nd Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[22]  Rüdiger L. Urbanke,et al.  Polar Codes for Channel and Source Coding , 2009, ArXiv.

[23]  Alexander Vardy,et al.  How to Construct Polar Codes , 2011, IEEE Transactions on Information Theory.

[24]  Ryuhei Mori Properties and Construction of Polar Codes , 2010, ArXiv.

[25]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[26]  Arman Fazeli,et al.  Explicit Polar Codes with Small Scaling Exponent , 2019, 2019 IEEE International Symposium on Information Theory (ISIT).

[27]  R. Gallager Information Theory and Reliable Communication , 1968 .

[28]  R. Dobrushin Mathematical Problems in the Shannon Theory of Optimal Coding of Information , 1961 .

[29]  Richard E. Blahut,et al.  Hypothesis testing and information theory , 1974, IEEE Trans. Inf. Theory.

[30]  Neri Merhav,et al.  Relations between entropy and error probability , 1994, IEEE Trans. Inf. Theory.

[31]  Seyed Hamed Hassani Polarization and Spatial Coupling - Two Techniques to Boost Performance , 2013 .

[32]  Erdal Arikan,et al.  Channel Polarization: A Method for Constructing Capacity-Achieving Codes for Symmetric Binary-Input Memoryless Channels , 2008, IEEE Transactions on Information Theory.

[33]  Anant Sahai,et al.  Lossless Coding for Distributed Streaming Sources , 2006, IEEE Transactions on Information Theory.

[34]  Neri Merhav,et al.  Exact Random Coding Secrecy Exponents for the Wiretap Channel , 2017, IEEE Trans. Inf. Theory.

[35]  Rajai Nasser An Ergodic Theory of Binary Operations—Part II: Applications to Polarization , 2017, IEEE Transactions on Information Theory.

[36]  Aria Ghasemian Sahebi,et al.  Multilevel polarization of polar codes over arbitrary discrete memoryless channels , 2011, 2011 49th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[37]  J. Wolfowitz The coding of messages subject to chance errors , 1957 .

[38]  Robert G. Gallager,et al.  The random coding bound is tight for the average code (Corresp.) , 1973, IEEE Trans. Inf. Theory.

[39]  R. Durrett Probability: Theory and Examples , 1993 .

[40]  Toshiyuki Tanaka,et al.  Channel polarization on q-ary discrete memoryless channels by arbitrary kernels , 2010, 2010 IEEE International Symposium on Information Theory.

[41]  Erdal Arikan,et al.  Variance of Entropy Decreases Under the Polar Transform , 2015, ArXiv.

[42]  H. Vincent Poor,et al.  Channel coding: non-asymptotic fundamental limits , 2010 .

[43]  M.A. Khojastepour,et al.  How quickly can we approach channel capacity? , 2004, Conference Record of the Thirty-Eighth Asilomar Conference on Signals, Systems and Computers, 2004..

[44]  Elwyn R. Berlekamp,et al.  Lower Bounds to Error Probability for Coding on Discrete Memoryless Channels. II , 1967, Inf. Control..

[45]  Hessam Mahdavifar Fast polarization for non-stationary channels , 2017, 2017 IEEE International Symposium on Information Theory (ISIT).

[46]  Junya Honda,et al.  Polar Coding Without Alphabet Extension for Asymmetric Models , 2013, IEEE Transactions on Information Theory.

[47]  Erdal Arikan,et al.  Source polarization , 2010, 2010 IEEE International Symposium on Information Theory.

[48]  Min Ye,et al.  Reed-Muller Codes Polarize , 2019, 2019 IEEE 60th Annual Symposium on Foundations of Computer Science (FOCS).

[49]  Vincent Y. F. Tan,et al.  Scaling Exponent and Moderate Deviations Asymptotics of Polar Codes for the AWGN Channel , 2017, Entropy.

[50]  Toshiyuki TANAKA,et al.  Source and Channel Polarization over Finite Fields , 2014 .

[51]  Arman Fazeli,et al.  Polar Codes for the Deletion Channel: Weak and Strong Polarization , 2019, 2019 IEEE International Symposium on Information Theory (ISIT).

[52]  Alexander Barg,et al.  Random codes: Minimum distances and error exponents , 2002, IEEE Trans. Inf. Theory.

[53]  Erdal Arikan,et al.  Channel polarization: A method for constructing capacity-achieving codes , 2008, 2008 IEEE International Symposium on Information Theory.

[54]  Rongke Liu,et al.  Construction of polar codes for channels with memory , 2015, 2015 IEEE Information Theory Workshop - Fall (ITW).

[55]  Rüdiger L. Urbanke,et al.  Near-optimal finite-length scaling for polar codes over large alphabets , 2016, 2016 IEEE International Symposium on Information Theory (ISIT).

[56]  Alexander Vardy,et al.  List decoding of polar codes , 2011, 2011 IEEE International Symposium on Information Theory Proceedings.

[57]  Aaron B. Wagner,et al.  Moderate Deviations in Channel Coding , 2012, IEEE Transactions on Information Theory.

[58]  Joseph M. Renes,et al.  Achieving the capacity of any DMC using only polar codes , 2012, 2012 IEEE Information Theory Workshop.

[60]  S. Verdú,et al.  Channel dispersion and moderate deviations limits for memoryless channels , 2010, 2010 48th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[61]  Masahito Hayashi,et al.  Information Spectrum Approach to Second-Order Coding Rate in Channel Coding , 2008, IEEE Transactions on Information Theory.

[62]  Ido Tal,et al.  Polar coding for processes with memory , 2016, 2016 IEEE International Symposium on Information Theory (ISIT).

[63]  Masahito Hayashi,et al.  General nonasymptotic and asymptotic formulas in channel resolvability and identification capacity and their application to the wiretap channel , 2006, IEEE Transactions on Information Theory.

[64]  Emre Telatar,et al.  Polarization for arbitrary discrete memoryless channels , 2009, 2009 IEEE Information Theory Workshop.

[65]  Toshiyuki Tanaka,et al.  Rate-Dependent Analysis of the Asymptotic Behavior of Channel Polarization , 2011, IEEE Transactions on Information Theory.

[66]  Venkatesan Guruswami,et al.  Polar Codes: Speed of Polarization and Polynomial Gap to Capacity , 2013, 2013 IEEE 54th Annual Symposium on Foundations of Computer Science.

[67]  Vincent Y. F. Tan,et al.  On the Scaling Exponent of Polar Codes for Binary-Input Energy-Harvesting Channels , 2016, IEEE Journal on Selected Areas in Communications.

[68]  Emre Telatar,et al.  Polar codes for q-ary source coding , 2010, 2010 IEEE International Symposium on Information Theory.

[69]  Andrea Montanari,et al.  An empirical scaling law for polar codes , 2010, 2010 IEEE International Symposium on Information Theory.

[70]  L. Weiss On the strong converse of the coding theorem for symmetric channels without memory , 1960 .

[71]  Eren Sasoglu,et al.  Polarization and Polar Codes , 2012, Found. Trends Commun. Inf. Theory.

[72]  Erdal Arikan,et al.  A packing lemma for polar codes , 2015, 2015 IEEE International Symposium on Information Theory (ISIT).

[73]  Alexander Vardy,et al.  A new polar coding scheme for strong security on wiretap channels , 2013, 2013 IEEE International Symposium on Information Theory.

[74]  David Burshtein,et al.  Improved Bounds on the Finite Length Scaling of Polar Codes , 2013, IEEE Transactions on Information Theory.

[75]  Vincent Y. F. Tan,et al.  On the Capacity of Channels With Deletions and States , 2019, IEEE Transactions on Information Theory.

[76]  Rüdiger L. Urbanke,et al.  Polar Codes: Characterization of Exponent, Bounds, and Constructions , 2010, IEEE Transactions on Information Theory.

[77]  Hsin-Po Wang,et al.  Polar-like Codes and Asymptotic Tradeoff among Block Length, Code Rate, and Error Probability , 2018, ArXiv.

[78]  Michael Gastpar,et al.  Polar Codes for Broadcast Channels , 2013, IEEE Transactions on Information Theory.

[79]  Rüdiger L. Urbanke,et al.  Polar Codes for Channel and Source Coding , 2009, ArXiv.

[80]  H. Vincent Poor,et al.  Channel Coding Rate in the Finite Blocklength Regime , 2010, IEEE Transactions on Information Theory.

[81]  Anant Sahai,et al.  Universal Quadratic Lower Bounds on Source Coding Error Exponents , 2007, 2007 41st Annual Conference on Information Sciences and Systems.

[82]  Yasutada Oohama Error probability of identification via channels at rates above capacity , 2002, Proceedings IEEE International Symposium on Information Theory,.

[83]  Richard W. Hamming,et al.  Error detecting and error correcting codes , 1950 .

[84]  Rüdiger L. Urbanke,et al.  Unified scaling of polar codes: Error exponent, scaling exponent, moderate deviations, and error floors , 2015, 2015 IEEE International Symposium on Information Theory (ISIT).

[85]  Arman Fazeli,et al.  Binary Linear Codes with Optimal Scaling: Polar Codes with Large Kernels , 2017, 2018 IEEE Information Theory Workshop (ITW).

[86]  Venkatesan Guruswami,et al.  Polar Codes with Exponentially Small Error at Finite Block Length , 2018, APPROX-RANDOM.

[87]  Alexander Barg,et al.  Polar Codes for $q$-Ary Channels, $q=2^{r}$ , 2013, IEEE Trans. Inf. Theory.

[88]  Rüdiger L. Urbanke,et al.  Universal bounds on the scaling behavior of polar codes , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.

[89]  Rüdiger L. Urbanke,et al.  Achieving Marton’s Region for Broadcast Channels Using Polar Codes , 2014, IEEE Transactions on Information Theory.

[90]  Harm S. Cronie,et al.  Lossless source coding with polar codes , 2010, 2010 IEEE International Symposium on Information Theory.

[91]  Rajai Nasser An Ergodic Theory of Binary Operations—Part I: Key Properties , 2016, IEEE Transactions on Information Theory.

[92]  Eren Sasoglu Polar codes for discrete alphabets , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.

[93]  Masahito Hayashi,et al.  Universally attainable error and information exponents, and equivocation rate for the broadcast channels with confidential messages , 2011, 2011 49th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[94]  A. Terras Fourier Analysis on Finite Groups and Applications: Index , 1999 .

[95]  Albert Guillén i Fàbregas,et al.  Extremes of random coding error exponents , 2011, 2011 IEEE International Symposium on Information Theory Proceedings.

[96]  Emre Telatar,et al.  Polar Codes for the Two-User Multiple-Access Channel , 2010, IEEE Transactions on Information Theory.

[97]  R. Urbanke,et al.  Polar codes are optimal for lossy source coding , 2009 .

[98]  Emre Telatar,et al.  On the rate of channel polarization , 2008, 2009 IEEE International Symposium on Information Theory.

[99]  P. Rowlinson FOURIER ANALYSIS ON FINITE GROUPS AND APPLICATIONS (London Mathematical Society Student Texts 43) , 2000 .

[100]  W. Fischer,et al.  A Course in Complex Analysis , 2012 .

[101]  Sergio Verdú,et al.  Lossy Joint Source-Channel Coding in the Finite Blocklength Regime , 2012, IEEE Transactions on Information Theory.