Noninvasive imaging of tumor integrin expression using 18F-labeled RGD dimer peptide with PEG4 linkers

PurposeVarious radiolabeled Arg-Gly-Asp (RGD) peptides have been previously investigated for tumor integrin αvβ3 imaging. To further develop RGD radiotracers with enhanced tumor-targeting efficacy and improved in vivo pharmacokinetics, we designed a new RGD homodimeric peptide with two PEG4 spacers (PEG4 = 15-amino-4,7,10,13-tetraoxapentadecanoic acid) between the two monomeric RGD motifs and one PEG4 linker on the glutamate α-amino group (18F-labeled PEG4-E[PEG4-c(RGDfK)]2, P-PRGD2), as a promising agent for noninvasive imaging of integrin expression in mouse models.MethodsP-PRGD2 was labeled with 18F via 4-nitrophenyl 2-18F-fluoropropionate (18F-FP) prosthetic group. In vitro and in vivo characteristics of the new dimeric RGD peptide tracer 18F-FP-P-PRGD2 were investigated and compared with those of 18F-FP-P-RGD2 (18F-labeled RGD dimer without two PEG4 spacers between the two RGD motifs). The ability of 18F-FP-P-PRGD2 to image tumor vascular integrin expression was evaluated in a 4T1 murine breast tumor model.ResultsWith the insertion of two PEG4 spacers between the two RGD motifs, 18F-FP-P-PRGD2 showed enhanced integrin αvβ3-binding affinity, increased tumor uptake and tumor-to-nontumor background ratios compared with 18F-FP-P-RGD2 in U87MG tumors. MicroPET imaging with 18F-FP-P-PRGD2 revealed high tumor contrast and low background in tumor-bearing nude mice. Biodistribution studies confirmed the in vivo integrin αvβ3-binding specificity of 18F-FP-P-RGD2. 18F-FP-P-PRGD2 can specifically image integrin αvβ3 on the activated endothelial cells of tumor neovasculature.Conclusion18F-FP-P-PRGD2 can provide important information on integrin expression on the tumor vasculature. The high integrin binding affinity and specificity, excellent pharmacokinetic properties and metabolic stability make the new RGD dimeric tracer 18F-FP-P-PRGD2 a promising agent for PET imaging of tumor angiogenesis and for monitoring the efficacy of antiangiogenic treatment.

[1]  E. Hoffman,et al.  The role of positron emission tomography in oncology and other whole-body applications. , 1992, Seminars in nuclear medicine.

[2]  W. Oyen,et al.  Comparison of a monomeric and dimeric radiolabeled RGD-peptide for tumor targeting. , 2002, Cancer biotherapy & radiopharmaceuticals.

[3]  W. Cai,et al.  microPET of Tumor Integrin αvβ3 Expression Using 18F-Labeled PEGylated Tetrameric RGD Peptide (18F-FPRGD4) , 2007, Journal of Nuclear Medicine.

[4]  Peter S. Conti,et al.  Pegylated Arg-Gly-Asp Peptide: 64Cu Labeling and PET Imaging of Brain Tumor αvβ3-Integrin Expression , 2004 .

[5]  Shuang Liu Radiolabeled Multimeric Cyclic RGD Peptides as Integrin αvβ3 Targeted Radiotracers for Tumor Imaging , 2006 .

[6]  Weibo Cai,et al.  Anti-Angiogenic Cancer Therapy Based on Integrin αvβ3 Antagonism , 2006 .

[7]  Sanjiv S Gambhir,et al.  PET of vascular endothelial growth factor receptor expression. , 2006, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[8]  J. Knuuti,et al.  Positron emission tomography and molecular imaging , 2008, Heart.

[9]  C. Gladson Expression of Integrin avß3 in Small Blood Vessels of Glioblastoma Tumors , 1996 .

[10]  Chandra L. Theesfeld,et al.  Involvement of integrins alpha v beta 3 and alpha v beta 5 in ocular neovascular diseases. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[11]  S. Gambhir,et al.  microPET Imaging of Glioma Integrin αvβ3 Expression Using 64Cu-Labeled Tetrameric RGD Peptide , 2005 .

[12]  Ryan Park,et al.  MicroPET and autoradiographic imaging of breast cancer alpha v-integrin expression using 18F- and 64Cu-labeled RGD peptide. , 2004, Bioconjugate chemistry.

[13]  R. Macklis,et al.  Radiation Oncology BioMed Central Review The impact of functional imaging on radiation medicine , 2008 .

[14]  D. Cheresh,et al.  The role of alphav integrins during angiogenesis: insights into potential mechanisms of action and clinical development. , 1999, The Journal of clinical investigation.

[15]  W. Cai,et al.  18F-labeled mini-PEG spacered RGD dimer (18F-FPRGD2): synthesis and microPET imaging of αvβ3 integrin expression , 2007, European Journal of Nuclear Medicine and Molecular Imaging.

[16]  Matthias Glaser,et al.  Phase I Trial of the Positron-Emitting Arg-Gly-Asp (RGD) Peptide Radioligand 18F-AH111585 in Breast Cancer Patients , 2008, Journal of Nuclear Medicine.

[17]  D. Cheresh,et al.  Requirement of vascular integrin alpha v beta 3 for angiogenesis. , 1994, Science.

[18]  Young-Seung Kim,et al.  Improving tumor uptake and excretion kinetics of 99mTc-labeled cyclic arginine-glycine-aspartic (RGD) dimers with triglycine linkers. , 2008, Journal of medicinal chemistry.

[19]  W. Oyen,et al.  Tumor Targeting with Radiolabeled v 3 Integrin Binding Peptides in a Nude Mouse Model , 2002 .

[20]  Weibo Cai,et al.  Near-Infrared Fluorescence Imaging of Tumor Integrin αvβ3 Expression with Cy7-Labeled RGD Multimers , 2006, Molecular Imaging and Biology.

[21]  Milind Rajopadhye,et al.  Tumor targeting with radiolabeled alpha(v)beta(3) integrin binding peptides in a nude mouse model. , 2002, Cancer research.

[22]  M. Schwaiger,et al.  [18F]Galacto-RGD: synthesis, radiolabeling, metabolic stability, and radiation dose estimates. , 2004, Bioconjugate chemistry.

[23]  Young-Seung Kim,et al.  Improving tumor-targeting capability and pharmacokinetics of (99m)Tc-labeled cyclic RGD dimers with PEG(4) linkers. , 2009, Molecular pharmaceutics.

[24]  Ryan Park,et al.  Micro-PET imaging of alphavbeta3-integrin expression with 18F-labeled dimeric RGD peptide. , 2004, Molecular imaging.

[25]  Chad J. Creighton,et al.  MDA-MB-435 cells are derived from M14 Melanoma cells––a loss for breast cancer, but a boon for melanoma research , 2007, Breast Cancer Research and Treatment.

[26]  J. Folkman Angiogenesis in cancer, vascular, rheumatoid and other disease , 1995, Nature Medicine.

[27]  Horst Kessler,et al.  Noninvasive Visualization of the Activated αvβ3 Integrin in Cancer Patients by Positron Emission Tomography and [18F]Galacto-RGD , 2005, PLoS medicine.

[28]  W. Cai,et al.  64Cu-Labeled Tetrameric and Octameric RGD Peptides for Small-Animal PET of Tumor αvβ3 Integrin Expression , 2007, Journal of Nuclear Medicine.

[29]  Napoleone Ferrara,et al.  Vascular endothelial growth factor: basic science and clinical progress. , 2004, Endocrine reviews.

[30]  Jean-Luc Coll,et al.  Template assembled cyclopeptides as multimeric system for integrin targeting and endocytosis. , 2004, Journal of the American Chemical Society.

[31]  Roland Haubner,et al.  αvβ3-integrin imaging: a new approach to characterise angiogenesis? , 2006, European Journal of Nuclear Medicine and Molecular Imaging.

[32]  P. Carmeliet,et al.  Angiogenesis in cancer and other diseases , 2000, Nature.

[33]  W. Cai,et al.  In vitro and in vivo characterization of 64Cu-labeled Abegrin, a humanized monoclonal antibody against integrin alpha v beta 3. , 2006, Cancer research.

[34]  W. Cai,et al.  In vitro and In vivo Characterization of 64Cu-Labeled AbegrinTM, a Humanized Monoclonal Antibody against Integrin αvβ3 , 2006 .

[35]  W. Oyen,et al.  Development and application of peptide-based radiopharmaceuticals. , 2007, Anti-cancer agents in medicinal chemistry.

[36]  H. Schelbert,et al.  Role of PET in the evaluation and understanding of coronary physiology , 2007, Journal of nuclear cardiology : official publication of the American Society of Nuclear Cardiology.

[37]  Peter S. Conti,et al.  MicroPET imaging of brain tumor angiogenesis with 18F-labeled PEGylated RGD peptide , 2004, European Journal of Nuclear Medicine and Molecular Imaging.

[38]  Fan Wang,et al.  68Ga-labeled cyclic RGD dimers with Gly3 and PEG4 linkers: promising agents for tumor integrin αvβ3 PET imaging , 2009, European Journal of Nuclear Medicine and Molecular Imaging.

[39]  M. Lacroix,et al.  MDA-MB-435 cells are from melanoma, not from breast cancer , 2009, Cancer Chemotherapy and Pharmacology.

[40]  Xiaoyuan Chen,et al.  68Ga-labeled multimeric RGD peptides for microPET imaging of integrin αvβ3 expression , 2008, European Journal of Nuclear Medicine and Molecular Imaging.

[41]  S. Gambhir,et al.  Quantitative PET Imaging of Tumor Integrin αvβ3 Expression with 18F-FRGD2 , 2006 .

[42]  George M Whitesides,et al.  Polyvalent Interactions in Biological Systems: Implications for Design and Use of Multivalent Ligands and Inhibitors. , 1998, Angewandte Chemie.

[43]  J. Folkman Role of angiogenesis in tumor growth and metastasis. , 2002, Seminars in oncology.