Solution-processed phase-change VO(2) metamaterials from colloidal vanadium oxide (VO(x)) nanocrystals.

We demonstrate thermally switchable VO2 metamaterials fabricated using solution-processable colloidal nanocrystals (NCs). Vanadium oxide (VOx) NCs are synthesized through a nonhydrolytic reaction and deposited from stable colloidal dispersions to form NC thin films. Rapid thermal annealing transforms the VOx NC thin films into monoclinic, nanocrystalline VO2 thin films that show a sharp, reversible metal-insulator phase transition. Introduction of precise concentrations of tungsten dopings into the colloidal VOx NCs enables the still sharp phase transition of the VO2 thin films to be tuned to lower temperatures as the doping level increases. We fabricate "smart", differentially doped, multilayered VO2 films to program the phase and therefore the metal-insulator behavior of constituent vertically structured layers with temperature. With increasing temperature, we tailored the optical response of multilayered films in the near-IR and IR regions from that of a strong light absorber, in a metal-insulator structure, to that of a Drude-like reflector, characteristic of a pure metallic structure. We demonstrate that nanocrystal-based nanoimprinting can be employed to pattern multilayered subwavelength nanostructures, such as three-dimensional VO2 nanopillar arrays, that exhibit plasmonic dipolar responses tunable with a temperature change.

[1]  A. Boltasseva,et al.  Shape-dependent plasmonic response and directed self-assembly in a new semiconductor building block, indium-doped cadmium oxide (ICO). , 2013, Nano letters.

[2]  S. Parkin,et al.  Suppression of Metal-Insulator Transition in VO2 by Electric Field–Induced Oxygen Vacancy Formation , 2013, Science.

[3]  Nader Engheta,et al.  Chemically tailored dielectric-to-metal transition for the design of metamaterials from nanoimprinted colloidal nanocrystals. , 2013, Nano letters.

[4]  Federico Capasso,et al.  Thermal tuning of mid-infrared plasmonic antenna arrays using a phase change material. , 2013, Optics letters.

[5]  Dominique Barchiesi,et al.  Localized surface plasmon resonance in arrays of nano-gold cylinders: inverse problem and propagation of uncertainties. , 2013, Optics express.

[6]  Bin Liu,et al.  Comprehensive study of the metal-insulator transition in pulsed laser deposited epitaxial VO2 thin films , 2013 .

[7]  Federico Capasso,et al.  Ultra-thin perfect absorber employing a tunable phase change material , 2012 .

[8]  Jie Zhang,et al.  Doping-based stabilization of the M2 phase in free-standing VO₂ nanostructures at room temperature. , 2012, Nano letters.

[9]  J. Poon,et al.  Design of electrically driven hybrid vanadium dioxide (VO2) plasmonic switches. , 2012, Optics express.

[10]  W. Pernice,et al.  Photonic non-volatile memories using phase change materials , 2012, 1208.1417.

[11]  M. Kawasaki,et al.  Collective bulk carrier delocalization driven by electrostatic surface charge accumulation , 2012, Nature.

[12]  Xin Zhang,et al.  Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial , 2012, Nature.

[13]  R F Oulton,et al.  Active nanoplasmonic metamaterials. , 2012, Nature materials.

[14]  Heng Ji,et al.  Hydrogen stabilization of metallic vanadium dioxide in single-crystal nanobeams , 2012 .

[15]  K. Diest,et al.  Vanadium dioxide based plasmonic modulators. , 2012, Optics express.

[16]  N. Zheludev,et al.  From metamaterials to metadevices. , 2012, Nature materials.

[17]  Kannatassen Appavoo,et al.  Role of defects in the phase transition of VO2 nanoparticles probed by plasmon resonance spectroscopy. , 2012, Nano letters.

[18]  Raffaella Buonsanti,et al.  Tunable infrared absorption and visible transparency of colloidal aluminum-doped zinc oxide nanocrystals. , 2011, Nano letters.

[19]  M. Wegener,et al.  Past achievements and future challenges in the development of three-dimensional photonic metamaterials , 2011 .

[20]  S. Ramanathan,et al.  Oxide Electronics Utilizing Ultrafast Metal-Insulator Transitions , 2011 .

[21]  Shriram Ramanathan,et al.  Substrate effects on metal-insulator transition characteristics of rf-sputtered epitaxial VO2 thin films , 2011 .

[22]  Nikolay I. Zheludev,et al.  Reconfigurable photonic metamaterials , 2011, CLEO: 2011 - Laser Science to Photonic Applications.

[23]  E. Rabani,et al.  Heavily Doped Semiconductor Nanocrystal Quantum Dots , 2011, Science.

[24]  Harry A. Atwater,et al.  Low-Loss Plasmonic Metamaterials , 2011, Science.

[25]  Félix E. Fernández,et al.  Optoelectronic and all-optical multiple memory states in vanadium dioxide , 2010 .

[26]  Yuri S. Kivshar,et al.  Active and tunable metamaterials , 2011 .

[27]  Sergei V. Kalinin,et al.  Symmetry relationship and strain-induced transitions between insulating M1 and M2 and metallic R phases of vanadium dioxide. , 2010, Nano letters.

[28]  Koray Aydin,et al.  Highly strained compliant optical metamaterials with large frequency tunability. , 2010, Nano letters.

[29]  M. Hentschel,et al.  Infrared perfect absorber and its application as plasmonic sensor. , 2010, Nano letters.

[30]  Gokul Gopalakrishnan,et al.  Three-terminal field effect devices utilizing thin film vanadium oxide as the channel layer , 2010, 1006.4373.

[31]  N. Zheludev,et al.  Metamaterial electro-optic switch of nanoscale thickness , 2010 .

[32]  S. Ramanathan,et al.  In situ x-ray diffraction studies on epitaxial VO2 films grown on c-Al2O3 during thermally induced insulator-metal transition , 2010 .

[33]  H. Atwater,et al.  Frequency tunable near-infrared metamaterials based on VO2 phase transition. , 2009, Optics express.

[34]  Byung-Gyu Chae,et al.  Memory Metamaterials , 2009, Science.

[35]  D. R. Khanal,et al.  Strain engineering and one-dimensional organization of metal-insulator domains in single-crystal vanadium dioxide beams. , 2009, Nature nanotechnology.

[36]  E. Sargent Infrared photovoltaics made by solution processing , 2009 .

[37]  Geoffrey B. Smith,et al.  The preparation of a plasmonically resonant VO2 thermochromic pigment , 2009, Nanotechnology.

[38]  E. Ulin-Avila,et al.  Three-dimensional optical metamaterial with a negative refractive index , 2008, Nature.

[39]  Yuebing Zheng,et al.  Light‐Driven Plasmonic Switches Based on Au Nanodisk Arrays and Photoresponsive Liquid Crystals , 2008 .

[40]  Fritz Keilmann,et al.  Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide , 2008 .

[41]  Joyeeta Nag,et al.  Synthesis of vanadium dioxide thin films and nanoparticles , 2008 .

[42]  Jeffrey N. Anker,et al.  Biosensing with plasmonic nanosensors. , 2008, Nature materials.

[43]  Yuebing Zheng,et al.  Systematic investigation of localized surface plasmon resonance of long-range ordered Au nanodisk arrays , 2008 .

[44]  Shriram Ramanathan,et al.  Structure-functional property relationships in rf-sputtered vanadium dioxide thin films , 2007 .

[45]  Young-soo Park,et al.  Two Series Oxide Resistors Applicable to High Speed and High Density Nonvolatile Memory , 2007 .

[46]  Stefan Gamerith,et al.  Inkjet‐Printed Nanocrystal Photodetectors Operating up to 3 μm Wavelengths , 2007 .

[47]  C. Granqvist Transparent conductors as solar energy materials: A panoramic review , 2007 .

[48]  Markus Niederberger,et al.  Nonaqueous sol-gel routes to metal oxide nanoparticles. , 2007, Accounts of chemical research.

[49]  David R. Smith,et al.  Metamaterial Electromagnetic Cloak at Microwave Frequencies , 2006, Science.

[50]  A. Feldhoff,et al.  Nonaqueous synthesis of uniform indium tin oxide nanocrystals and their electrical conductivity in dependence of the tin oxide concentration , 2006 .

[51]  Andrea Alù,et al.  Erratum: Achieving transparency with plasmonic and metamaterial coatings [Phys. Rev. E, 72 , 016623 (2005)] , 2006 .

[52]  A Paul Alivisatos,et al.  Air-Stable All-Inorganic Nanocrystal Solar Cells Processed from Solution , 2005, Science.

[53]  M. Maaza,et al.  Thermal induced tunability of surface plasmon resonance in Au–VO2 nano-photonics , 2005 .

[54]  Harry A. Atwater,et al.  Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model , 2005 .

[55]  Sylvain Fourmaux,et al.  Grain size effect on the semiconductor-metal phase transition characteristics of magnetron-sputtered VO2 thin films , 2005 .

[56]  N. Fang,et al.  Sub–Diffraction-Limited Optical Imaging with a Silver Superlens , 2005, Science.

[57]  N. Engheta,et al.  Achieving transparency with plasmonic and metamaterial coatings. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[58]  Hongkun Park,et al.  Single-crystalline vanadium dioxide nanowires with rectangular cross sections. , 2005, Journal of the American Chemical Society.

[59]  L. Feldman,et al.  Size-dependent optical properties of VO2 nanoparticle arrays. , 2004, Physical review letters.

[60]  David R. Smith,et al.  Metamaterials and Negative Refractive Index , 2004, Science.

[61]  N. Zheludev,et al.  Active plasmonics: Controlling signals in Au/Ga waveguide using nanoscale structural transformations , 2003, cond-mat/0310530.

[62]  C. Granqvist,et al.  Solar energy materials , 1991 .

[63]  D. A. Schwartz,et al.  Magnetic quantum dots: synthesis, spectroscopy, and magnetism of Co2+ - and Ni2+-doped ZnO nanocrystals. , 2003, Journal of the American Chemical Society.

[64]  George Chumanov,et al.  WO3 Sol–Gel Modified Ag Nanoparticle Arrays for Electrochemical Modulation of Surface Plasmon Resonance , 2003 .

[65]  H. Katzke,et al.  Theory of morphotropic transformations in vanadium oxides , 2003 .

[66]  Richard F. Haglund,et al.  Synthesis and characterization of size-controlled vanadium dioxide nanocrystals in a fused silica matrix , 2002 .

[67]  T. E. Haynes,et al.  Temperature-controlled surface plasmon resonance in VO (2) nanorods. , 2002, Optics letters.

[68]  Rene Lopez,et al.  Size effects in the structural phase transition of VO2 nanoparticles , 2002 .

[69]  J. Lewis,et al.  Direct-write assembly of ceramics from colloidal inks , 2002 .

[70]  R. Shelby,et al.  Experimental Verification of a Negative Index of Refraction , 2001, Science.

[71]  N. Yao,et al.  High-Quality Manganese-Doped ZnSe Nanocrystals , 2001 .

[72]  J. Pendry,et al.  Negative refraction makes a perfect lens , 2000, Physical review letters.

[73]  Alexander Pergament,et al.  Electrical switching and Mott transition in VO2 , 2000 .

[74]  Moungi G. Bawendi,et al.  Organometallic Synthesis and Spectroscopic Characterization of Manganese-Doped CdSe Nanocrystals , 2000 .

[75]  A. Chikouche,et al.  Design and simulation of antireflection coating systems for optoelectronic devices : Application to silicon solar cells , 1998 .

[76]  M. Nagano,et al.  Switching properties of V1 − xTixO2 thin films deposited from alkoxides , 1997 .

[77]  Lynn A. Boatner,et al.  Optical switching of coherent VO2 precipitates formed in sapphire by ion implantation and annealing , 1996 .

[78]  Hoi Sing Kwok,et al.  Pulsed laser deposition of VO2 thin films , 1994 .

[79]  Deborah P. Partlow,et al.  Switchable vanadium oxide films by a sol‐gel process , 1991 .

[80]  J. C. Lee,et al.  Doped vanadium oxide for optical switching films , 1986 .

[81]  C. H. Griffiths,et al.  Influence of stoichiometry on the metal‐semiconductor transition in vanadium dioxide , 1974 .

[82]  J. Goodenough Anomalous Properties of the Vanadium Oxides , 1971 .

[83]  F. J. Morin,et al.  Oxides Which Show a Metal-to-Insulator Transition at the Neel Temperature , 1959 .