Digital vibrons: understanding users' perceptions of interacting with invisible, zero-weight matter

We investigate in this work users' perceptions of interacting with invisible, zero-weight digital matter for smart mobile scenarios. To this end, we introduce the concept of a digital vibron as vibrational manifestation of a digital object located outside its container device. We exemplify gesture-based interactions for digital vibrons and show how thinking about interactions in terms of digital vibrons can lead to new interactive experiences in the physical-digital space. We present the results of a user study that showed high scores of users' perceived experience, usability, and desirability, and we discuss users' preferences for vibration patterns to inform the design of vibrotactile feedback for digital vibrons. We hope that this work will inspire researchers and practitioners to further explore and develop digital vibrons to design localized vibrotactile feedback for digital objects outside their smart devices toward new interactive experiences in the physical-digital space.

[1]  Teemu Tuomas Ahmaniemi,et al.  Perceived physicality in audio-enhanced force input , 2011, ICMI '11.

[2]  Brad A. Myers,et al.  Maximizing the guessability of symbolic input , 2005, CHI Extended Abstracts.

[3]  Patrick Baudisch,et al.  Disappearing mobile devices , 2009, UIST '09.

[4]  Tadeusz Paszkiewicz,et al.  Physics of Phonons , 1987 .

[5]  Geehyuk Lee,et al.  SplitBoard: A Simple Split Soft Keyboard for Wristwatch-sized Touch Screens , 2015, CHI.

[6]  Cynthia Breazeal,et al.  TIKL: Development of a Wearable Vibrotactile Feedback Suit for Improved Human Motor Learning , 2007, IEEE Transactions on Robotics.

[7]  Hannes Kaufmann,et al.  3DTouch and HOMER-S: intuitive manipulation techniques for one-handed handheld augmented reality , 2013, VRIC.

[8]  Ian Oakley,et al.  Beats: Tapping Gestures for Smart Watches , 2015, CHI.

[9]  Donald E. Knuth Two notes on notation , 1992 .

[10]  Chris Harrison,et al.  Abracadabra: wireless, high-precision, and unpowered finger input for very small mobile devices , 2009, UIST '09.

[11]  Jun Rekimoto,et al.  Pick-and-drop: a direct manipulation technique for multiple computer environments , 1997, UIST '97.

[12]  Stephan Schlögl,et al.  Wearables in the Wild: Advocating Real-Life User Studies , 2015, MobileHCI Adjunct.

[13]  Robert W. Lindeman,et al.  Effectiveness of directional vibrotactile cuing on a building-clearing task , 2005, CHI.

[14]  Radu-Daniel Vatavu,et al.  Audience Silhouettes: Peripheral Awareness of Synchronous Audience Kinesics for Social Television , 2015, TVX.

[15]  J. B. Brooke,et al.  SUS: A 'Quick and Dirty' Usability Scale , 1996 .

[16]  Patrick Baudisch,et al.  Imaginary devices: gesture-based interaction mimicking traditional input devices , 2013, MobileHCI '13.

[17]  Radu-Daniel Vatavu,et al.  Between-Subjects Elicitation Studies: Formalization and Tool Support , 2016, CHI.

[18]  Olivier Bau,et al.  REVEL: tactile feedback technology for augmented reality , 2012, ACM Trans. Graph..

[19]  Jae Yeol Lee,et al.  Direct hand touchable interactions in augmented reality environments for natural and intuitive user experiences , 2013, Expert Syst. Appl..

[20]  Blair MacIntyre,et al.  RoomAlive: magical experiences enabled by scalable, adaptive projector-camera units , 2014, UIST.

[21]  Radu-Daniel Vatavu,et al.  Touch, Movement and Vibration: User Perception of Vibrotactile Feedback for Touch and Mid-Air Gestures , 2015, INTERACT.

[22]  Blake Hannaford,et al.  Tactile data entry for extravehicular activity , 2011, 2011 IEEE World Haptics Conference.

[23]  Radu-Daniel Vatavu,et al.  Formalizing Agreement Analysis for Elicitation Studies: New Measures, Significance Test, and Toolkit , 2015, CHI.

[24]  Hiroshi Ishii,et al.  Tangible bits: towards seamless interfaces between people, bits and atoms , 1997, CHI.

[25]  Hiroshi Ishii,et al.  Radical atoms: beyond tangible bits, toward transformable materials , 2012, INTR.

[26]  Marcos Serrano,et al.  Bonjour! Greeting Gestures for Collocated Interaction with Wearables , 2015, MobileHCI Adjunct.

[27]  H ThomasBruce A survey of visual, mixed, and augmented reality gaming , 2012 .

[28]  Tovi Grossman,et al.  NanoStylus: Enhancing Input on Ultra-Small Displays with a Finger-Mounted Stylus , 2015, UIST.

[29]  Jan O. Borchers,et al.  Tactile motion instructions for physical activities , 2009, CHI.

[30]  Valtteri Wikström,et al.  Embodied Interactions with Audio-Tactile Virtual Objects in AHNE , 2012, HAID.

[31]  Meredith Ringel Morris,et al.  User-defined gestures for surface computing , 2009, CHI.

[32]  Stephen A. Brewster,et al.  Tactile Feedback for Above-Device Gesture Interfaces: Adding Touch to Touchless Interactions , 2014, ICMI.

[33]  Alex Olwal,et al.  Multimodal motion guidance: techniques for adaptive and dynamic feedback , 2012, ICMI '12.

[34]  Chris Harrison,et al.  OmniTouch: wearable multitouch interaction everywhere , 2011, UIST.

[35]  Patrick Baudisch,et al.  Imaginary phone: learning imaginary interfaces by transferring spatial memory from a familiar device , 2011, UIST.

[36]  Radu-Daniel Vatavu,et al.  There's a world outside your TV: exploring interactions beyond the physical TV screen , 2013, EuroITV.

[37]  Otmar Hilliges,et al.  Steerable augmented reality with the beamatron , 2012, UIST.

[38]  Bruce H. Thomas,et al.  A survey of visual, mixed, and augmented reality gaming , 2012, CIE.

[39]  Lorna M. Brown,et al.  Tactons: Structured Tactile Messages for Non-Visual Information Display , 2004, AUIC.

[40]  Philip T. Kortum,et al.  Determining what individual SUS scores mean: adding an adjective rating scale , 2009 .

[41]  Patrick Baudisch,et al.  Imaginary reality gaming: ball games without a ball , 2013, UIST.

[42]  J. Wolfe,et al.  Imaging Phonons: Acoustic Wave Propagation in Solids , 1998 .

[43]  James T. Miller,et al.  An Empirical Evaluation of the System Usability Scale , 2008, Int. J. Hum. Comput. Interact..

[44]  Ali Israr,et al.  AIREAL: interactive tactile experiences in free air , 2013, ACM Trans. Graph..

[45]  Pattie Maes,et al.  WUW - wear Ur world: a wearable gestural interface , 2009, CHI Extended Abstracts.

[46]  Blaine A. Price,et al.  Wearables: has the age of smartwatches finally arrived? , 2015, Commun. ACM.

[47]  Jun Rekimoto,et al.  Traxion: a tactile interaction device with virtual force sensation , 2013, SIGGRAPH '14.

[48]  J. V. Erp Guidelines for the Use of Vibro-Tactile Displays in Human Computer Interaction , 2002 .