TolC Is Involved in Enterobactin Efflux across the Outer Membrane of Escherichia coli

ABSTRACT Escherichia coli excretes the catecholate siderophore enterobactin in response to iron deprivation. While the mechanisms underlying enterobactin biosynthesis and ferric enterobactin uptake and utilization are widely understood, nearly nothing is known about how enterobactin is exported from the cell. Mutant and high-performance liquid chromatography analyses demonstrated that the outer membrane channel tunnel protein TolC but none of the respective seven resistance nodulation cell division (RND) proteins CusA, AcrB, AcrD, AcrF, MdtF (YhiV), or the twin RND MdtBC (YegNO) was essential for enterobactin export across the outer membrane. Mutant E. coli strains with additional deletion of tolC or the major facilitator entS were growth deficient in iron-depleted medium. Strains with deletion of tolC or entS, but not with deletion of genes encoding RND transporters, excreted very little enterobactin into the growth medium. Enterobactin excretion in E. coli is thus probably a two-step process involving the major facilitator EntS and the outer membrane channel tunnel protein TolC. Quantitative reverse transcription-PCR analysis of gene-specific transcripts showed no significant changes in tolC expression upon iron depletion. However, iron starvation led to increased expression of the RND gene mdtF and a decrease in acrD.

[1]  M. Maguire,et al.  The Metal Permease ZupT from Escherichia coli Is a Transporter with a Broad Substrate Spectrum , 2005, Journal of bacteriology.

[2]  G. Grass,et al.  The Chromosomally Encoded Cation Diffusion Facilitator Proteins DmeF and FieF from Wautersia metallidurans CH34 Are Transporters of Broad Metal Specificity , 2004, Journal of bacteriology.

[3]  M. Maguire,et al.  The CorA Mg2+ Transporter Does Not Transport Fe2+ , 2004, Journal of bacteriology.

[4]  A. Müller,et al.  Linkage between Catecholate Siderophores and the Multicopper Oxidase CueO in Escherichia coli , 2004, Journal of bacteriology.

[5]  E. Bokma,et al.  Structure of the periplasmic component of a bacterial drug efflux pump. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[6]  P. Klebba Three paradoxes of ferric enterobactin uptake. , 2003, Frontiers in bioscience : a journal and virtual library.

[7]  C. Rensing,et al.  Interplay of the Czc System and Two P-Type ATPases in Conferring Metal Resistance to Ralstonia metallidurans , 2003, Journal of bacteriology.

[8]  C. Rensing,et al.  Molecular Analysis of the Copper-Transporting Efflux System CusCFBA of Escherichia coli , 2003, Journal of bacteriology.

[9]  C. Rensing,et al.  Escherichia coli mechanisms of copper homeostasis in a changing environment. , 2003, FEMS microbiology reviews.

[10]  D. Nies,et al.  Efflux-mediated heavy metal resistance in prokaryotes. , 2003, FEMS microbiology reviews.

[11]  J. H. Crosa,et al.  Genetic organization of an Acinetobacter baumannii chromosomal region harbouring genes related to siderophore biosynthesis and transport. , 2003, Microbiology.

[12]  K. Raymond,et al.  Enterobactin: An archetype for microbial iron transport , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[13]  H. Nikaido,et al.  It takes three to tango , 2002, Nature Biotechnology.

[14]  India G. Hook-Barnard,et al.  Export of the siderophore enterobactin in Escherichia coli: involvement of a 43 kDa membrane exporter , 2002, Molecular microbiology.

[15]  A. Yamaguchi,et al.  EvgA of the Two-Component Signal Transduction System Modulates Production of the YhiUV Multidrug Transporter in Escherichia coli , 2002, Journal of bacteriology.

[16]  A. Yamaguchi,et al.  Analysis of a Complete Library of Putative Drug Transporter Genes in Escherichia coli , 2001, Journal of bacteriology.

[17]  A. Yamaguchi,et al.  Novel Macrolide-Specific ABC-Type Efflux Transporter inEscherichia coli , 2001, Journal of bacteriology.

[18]  H. Nikaido,et al.  AcrAB and related multidrug efflux pumps of Escherichia coli. , 2001, Journal of molecular microbiology and biotechnology.

[19]  C. Rensing,et al.  Genes Involved in Copper Homeostasis inEscherichia coli , 2001, Journal of bacteriology.

[20]  B. Wanner,et al.  One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[21]  S. Cole,et al.  Identification of the Escherichia coli K‐12 Nramp orthologue (MntH) as a selective divalent metal ion transporter , 2000, Molecular microbiology.

[22]  N. Brown,et al.  Transcriptional Organization of the czcHeavy-Metal Homeostasis Determinant from Alcaligenes eutrophus , 1999, Journal of bacteriology.

[23]  Hiroshi Nikaido,et al.  Multidrug Efflux Pump AcrAB of Salmonella typhimuriumExcretes Only Those β-Lactam Antibiotics Containing Lipophilic Side Chains , 1998, Journal of bacteriology.

[24]  A. Albrecht-Gary,et al.  Coordination chemistry of siderophores: thermodynamics and kinetics of iron chelation and release. , 1998, Metal ions in biological systems.

[25]  Mami Yamamoto,et al.  Involvement of Outer Membrane Protein TolC, a Possible Member of the mar-sox Regulon, in Maintenance and Improvement of Organic Solvent Tolerance of Escherichia coli K-12 , 1998, Journal of bacteriology.

[26]  Rikizo Aonoa Improvement of organic solvent tolerance level of Escherichia coli by overexpression of stress-responsive genes , 1998, Extremophiles.

[27]  M H Saier,et al.  A family of gram-negative bacterial outer membrane factors that function in the export of proteins, carbohydrates, drugs and heavy metals from gram-negative bacteria. , 1997, FEMS microbiology letters.

[28]  H. Nikaido Multidrug efflux pumps of gram-negative bacteria , 1996, Journal of bacteriology.

[29]  M. Saier,et al.  Two novel families of bacterial membrane proteins concerned with nodulation, cell division and transport , 1994, Molecular microbiology.

[30]  D. Heinrichs,et al.  Cloning and sequence analysis of an EnvCD homologue in Pseudomonas aeruginosa: regulation by iron and possible involvement in the secretion of the siderophore pyoverdine , 1993, Molecular microbiology.

[31]  K. Poole,et al.  Multiple antibiotic resistance in Pseudomonas aeruginosa: evidence for involvement of an efflux operon , 1993, Journal of bacteriology.

[32]  B. Ahmer,et al.  Energy transduction between membranes. TonB, a cytoplasmic membrane protein, can be chemically cross-linked in vivo to the outer membrane receptor FepA. , 1993, The Journal of biological chemistry.

[33]  K. Lewis,et al.  Emr, an Escherichia coli locus for multidrug resistance. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[34]  C. Earhart,et al.  Organization of genes encoding membrane proteins of the Escherichia coli ferrienterobactin permease , 1991, Molecular microbiology.

[35]  J. Neilands,et al.  Universal chemical assay for the detection and determination of siderophores. , 1987, Analytical biochemistry.

[36]  M. Mergeay,et al.  Alcaligenes eutrophus CH34 is a facultative chemolithotroph with plasmid-bound resistance to heavy metals , 1985, Journal of bacteriology.

[37]  J. Sambrook,et al.  Molecular Cloning: A Laboratory Manual , 2001 .

[38]  B. Bachmann,et al.  Pedigrees of some mutant strains of Escherichia coli K-12. , 1972, Bacteriological reviews.

[39]  E. Whitney The tolC locus in Escherichia coli K12. , 1971, Genetics.

[40]  F. Gibson,et al.  The structure of enterochelin and related 2,3-dihydroxy-N-benzoylserine conjugates from Escherichia coli. , 1970, Biochimica et biophysica acta.

[41]  J. Neilands,et al.  Enterobactin, an iron transport compound from Salmonella typhimurium. , 1970, Biochemical and biophysical research communications.