A SMOOTH INTRODUCTION TO SYMBOLIC METHODS FOR KNOWLEDGE DISCOVERY

In this chapter, we present a smooth introduction to symbolic methods for knowledge discovery in databases (KDD). The KDD process extracts from large databases information units that can be interpreted as knowledge units to be reused. This process has three major steps: the selection and preparation of data, the data mining operation, and finally the interpretation of the extracted units. The process may take advantage of domain knowledge embedded in domain ontologies, which may be used at every step of the KDD process. We describe three symbolic methods for KDD: lattice-based classification, frequent itemset search, and association rule extraction. Then, we present three applications of the KDD process, and end the chapter with a discussion of the main characteristics of KDD.

[1]  Sergei O. Kuznetsov,et al.  Machine Learning and Formal Concept Analysis , 2004, ICFCA.

[2]  Hendrik Blockeel,et al.  Web mining research: a survey , 2000, SKDD.

[3]  Claudio Carpineto,et al.  Concept data analysis - theory and applications , 2004 .

[4]  Sasikumar Mukundan,et al.  Spinning the Semantic Web , 2004 .

[5]  Amedeo Napoli,et al.  Data mining in reaction databases: extraction of knowledge on chemical functionality transformations , 2004 .

[6]  Nicolas Pasquier,et al.  Discovering Frequent Closed Itemsets for Association Rules , 1999, ICDT.

[7]  Heikki Mannila,et al.  Methods and Problems in Data Mining , 1997, ICDT.

[8]  Gerd Stumme,et al.  Conceptual Knowledge Discovery in Databases Using Formal Concept Analysis Methods , 1998, PKDD.

[9]  Rokia Missaoui,et al.  Formal Concept Analysis for Knowledge Discovery and Data Mining: The New Challenges , 2004, ICFCA.

[10]  Tomasz Imielinski,et al.  Mining association rules between sets of items in large databases , 1993, SIGMOD Conference.

[11]  Vincent Duquenne,et al.  Latticial Structures in Data Analysis , 1999, Theor. Comput. Sci..

[12]  Heiner Stuckenschmidt,et al.  Handbook on Ontologies , 2004, Künstliche Intell..

[13]  Karl Rihaczek,et al.  1. WHAT IS DATA MINING? , 2019, Data Mining for the Social Sciences.

[14]  Philippe Vismara,et al.  An abstract representation for molecular graphs , 1998, Discrete Mathematical Chemistry.

[15]  Chad Creighton,et al.  Mining gene expression databases for association rules , 2003, Bioinform..

[16]  StummeGerd,et al.  Computing iceberg concept lattices with TITANIC , 2002 .

[17]  Heikki Mannila,et al.  Principles of Data Mining , 2001, Undergraduate Topics in Computer Science.

[18]  Nicolas Pasquier,et al.  Pruning closed itemset lattices for associations rules , 1998, BDA.

[19]  Petra Perner,et al.  Data Mining - Concepts and Techniques , 2002, Künstliche Intell..

[20]  Sebastian Rudolph,et al.  Formal Concept Analysis Methods for Dynamic Conceptual Graphs , 2001, ICCS.

[21]  Ramakrishnan Srikant,et al.  Fast Algorithms for Mining Association Rules in Large Databases , 1994, VLDB.

[22]  J. Palous,et al.  Machine Learning and Data Mining , 2002 .

[23]  Roland Ducournau,et al.  An object-based representation system for organic synthesis planning , 1994, Int. J. Hum. Comput. Stud..

[24]  Peter A. Flach,et al.  Rule Evaluation Measures: A Unifying View , 1999, ILP.

[25]  A. Guénoche Construction du treillis de Galois d'une relation binaire , 1990 .

[26]  Hannu Toivonen,et al.  Discovery of frequent DATALOG patterns , 1999, Data Mining and Knowledge Discovery.

[27]  Amedeo Napoli,et al.  Knowledge-Based Selection of Association Rules for Text Mining , 2004, ECAI.

[28]  Margaret H. Dunham,et al.  Data Mining: Introductory and Advanced Topics , 2002 .

[29]  Andreas Hotho,et al.  Towards Semantic Web Mining , 2002, SEMWEB.

[30]  Mohammed J. Zaki,et al.  CHARM: An Efficient Algorithm for Closed Itemset Mining , 2002, SDM.

[31]  Jaideep Srivastava,et al.  Selecting the right interestingness measure for association patterns , 2002, KDD.

[32]  L. Beran,et al.  [Formal concept analysis]. , 1996, Casopis lekaru ceskych.

[33]  Heikki Mannila,et al.  Fast Discovery of Association Rules , 1996, Advances in Knowledge Discovery and Data Mining.

[34]  Guus Schreiber,et al.  Knowledge Engineering and Management: The CommonKADS Methodology , 1999 .

[35]  Rudolf Wille,et al.  Why can concept lattices support knowledge discovery in databases? , 2002, J. Exp. Theor. Artif. Intell..

[36]  Alain Guénoche,et al.  Galois approach to the induction of concepts , 1993 .

[37]  Amedeo Napoli,et al.  An Experiment on Knowledge Discovery in Chemical Databases , 2004, PKDD.

[38]  Ronald J. Brachman,et al.  The Process of Knowledge Discovery in Databases , 1996, Advances in Knowledge Discovery and Data Mining.

[39]  Janusz Zalewski,et al.  Rough sets: Theoretical aspects of reasoning about data , 1996 .

[40]  Heikki Mannila,et al.  Efficient Algorithms for Discovering Association Rules , 1994, KDD Workshop.

[41]  Gregory Piatetsky-Shapiro,et al.  Advances in Knowledge Discovery and Data Mining , 2004, Lecture Notes in Computer Science.

[42]  Sergei O. Kuznetsov,et al.  Algorithms for the Construction of Concept Lattices and Their Diagram Graphs , 2001, PKDD.

[43]  Brian A. Davey,et al.  An Introduction to Lattices and Order , 1989 .

[44]  Amedeo Napoli,et al.  Towards a Text Mining Methodology Using Frequent Itemsets and Association Rule Extraction , 2003 .

[45]  Jerzy W. Grzymala-Busse,et al.  Rough Sets , 1995, Commun. ACM.

[46]  Tom M. Mitchell,et al.  Machine Learning and Data Mining , 2012 .

[47]  Bernhard Ganter,et al.  Concept-Based Data Mining with Scaled Labeled Graphs , 2004, ICCS.

[48]  Thomas G. Dietterich What is machine learning? , 2020, Archives of Disease in Childhood.

[49]  Sergei O. Kuznetsov,et al.  Comparing performance of algorithms for generating concept lattices , 2002, J. Exp. Theor. Artif. Intell..

[50]  Edward E. Smith,et al.  Categories and concepts , 1984 .