Bosonic Reduction of Susy Generalized Harry Dym Equation

In this paper, we construct the two-component supersymmetric generalized Harry Dym equation which is integrable and study various properties of this model in the bosonic limit. In particular, in the bosonic limit we obtain a new integrable system which, under a hodograph transformation, reduces to a coupled three-component system. We show how the Hamiltonian structure transforms under a hodograph transformation and study the properties of the model under a further reduction to a two-component system. We find a third Hamiltonian structure for this system (which has been shown earlier to be a bi-Hamiltonian system) making this a genuinely tri-Hamiltonian system. The connection of this system to the modified dispersive water wave equation is clarified. We also study various properties in the dispersionless limit of our model.

[1]  John Ellis,et al.  Int. J. Mod. Phys. , 2005 .

[2]  P. Guha Geodesic flow on (super-) Bott–Virasoro group and Harry Dym family , 2004 .

[3]  S. Sakovich On bosonic limits of two recent supersymmetric extensions of the Harry Dym hierarchy , 2003, nlin/0310039.

[4]  S. Sakovich Transformation of a generalized Harry Dym equation into the Hirota–Satsuma system , 2003, nlin/0309077.

[5]  J. C. Brunelli,et al.  Deformed Harry Dym and Hunter–Zheng equations , 2003, nlin/0307043.

[6]  J. Coyle Inverse Problems , 2004 .

[7]  Z. Popowicz The generalized Harry Dym equation , 2003, nlin/0305041.

[8]  J. C. Brunelli,et al.  Supersymmetric extensions of the Harry Dym hierarchy , 2003, nlin/0304047.

[9]  Z. Popowicz,et al.  Non polynomial conservation law densities generated by the symmetry operators in some hydrodynamical models , 2003, nlin/0303067.

[10]  J. C. Brunelli,et al.  On the nonlocal equations and nonlocal charges associated with the Harry Dym hierarchy , 2002, nlin/0207041.

[11]  R. Jackiw,et al.  Supersymmetric fluid mechanics , 2000, hep-th/0004083.

[12]  Mikhail V. Foursov,et al.  On integrable coupled KdV-type systems , 2000 .

[13]  Hui-Hui Dai,et al.  Transformations for the Camassa-Holm Equation, Its High-Frequency Limit and the Sinh-Gordon Equation. , 1998 .

[14]  Maciej Błaszak,et al.  Multi-Hamiltonian Theory of Dynamical Systems , 1998 .

[15]  F. Delduc,et al.  New super KdV system with the N = 4 SCA as the hamiltonian structure , 1996, hep-th/9611033.

[16]  Z. Popowicz The extended supersymmetrization of the multicomponent Kadomtsev - Petviashvilli hierarchy , 1995, hep-th/9510185.

[17]  J. C. Brunelli,et al.  SUPERSYMMETRIC TWO-BOSON EQUATION, ITS REDUCTIONS AND THE NONSTANDARD SUPERSYMMETRIC KP HIERARCHY , 1995, hep-th/9505093.

[18]  Q. P. Liu Supersymmetric Harry Dym type equations , 1995, solv-int/9503001.

[19]  J. K. Hunter,et al.  On a completely integrable nonlinear hyperbolic variational equation , 1994 .

[20]  C. Morosi,et al.  On the biHamiltonian structure of the supersymmetric KdV hierarchies. A Lie superalgebraic approach , 1993 .

[21]  Darryl D. Holm,et al.  An integrable shallow water equation with peaked solitons. , 1993, Physical review letters.

[22]  K. Becker,et al.  NON-PERTURBATIVE SOLUTION OF THE SUPER-VIRASORO CONSTRAINTS , 1993, hep-th/9301017.

[23]  W. Oevel,et al.  The bi-Hamiltonian structure of fully supersymmetric Korteweg-de Vries systems , 1991 .

[24]  A. Das,et al.  An alternate characterization of integrability , 1990 .

[25]  P. Mathieu,et al.  $N=2$ Superconformal Algebra and Integrable O(2) Fermionic Extensions of the Korteweg-de Vries Equation , 1988 .

[26]  P. Olver Applications of Lie Groups to Differential Equations , 1986 .

[27]  N. Ibragimov Transformation groups applied to mathematical physics , 1984 .

[28]  Vladimir E. Zakharov,et al.  Benney equations and quasiclassical approximation in the method of the inverse problem , 1980 .

[29]  M. Kruskal,et al.  Nonlinear wave equations , 1975 .

[30]  John K. Tomfohr,et al.  Lecture Notes on Physics , 1879, Nature.