Ni-Based Solid Oxide Cell Electrodes

This paper is a critical review of the literature on nickel-based electrodes for application in solid oxide cells at temperature from 500 to 1000 °C. The applications may be fuel cells or electrolyser cells. The reviewed literature is that of experimental results on both model electrodes and practical composite cermet electrodes. A substantially longer three-phase boundary (TPB) can be obtained per unit area of cell in such a composite of nickel and electrolyte material, provided that two interwoven solid networks of the two solid and one gaseous phases are obtained to provide a three - dimensional TPB throughout the electrode volume. Variables that are used for controlling the properties of Ni-cermet electrodes are: (1) Ni/YSZ volume ratio, and (2) porosity and particle size distribution, which mainly affected by raw materials morphology, application methods and production parameters such as milling and sintering. The various electrode properties are deeply related to these parameters, but also much related to the atomic scale structure of the Ni-electrolyte interface, which in turn is affected by segregation of electrolyte components and impurities as well as poisons in the gas phase. The main emphasis will be on the following subjects: (a) electronic conductivity of cermets, (b) dimensional and thermodynamic stability including redox cycling, (c) thermal expansion coefficient matching, (d) chemical compatibility with stack components and gaseous reactants and (e) electrode reaction mechanism and polarisation resistance. A brief discussion of the main concepts in the modelling literature is given in context of the latter subject.

[1]  N. Nakagawa,et al.  Evaluation of the Effective Reaction Zone at Ni ( NiO ) / Zirconia Anode by Using an Electrode with a Novel Structure , 1995 .

[2]  Mogens Bjerg Mogensen,et al.  Kinetic and geometric aspects of solid oxide fuel cell electrodes , 1996 .

[3]  H. Tuller 6 – Mixed Conduction in Nonstoichiometric Oxides , 1981 .

[4]  Jitendra N. Tiwari,et al.  Electrocatalytic activity of Pt nanoparticles electrodeposited on amorphous carbon-coated silicon nanocones , 2010 .

[5]  P. V. Hendriksen,et al.  Model studies of internal steam reforming in SOFC stacks , 1997 .

[6]  T. Norby Reaction Resistance in Relation to Three Phase Boundary Length of Ni/YSZ Electrodes , 1993 .

[7]  Mogens Bjerg Mogensen,et al.  Continuum mechanics simulations of NiO/Ni–YSZ composites during reduction and re-oxidation , 2010 .

[8]  S. Primdahl,et al.  Relationship between strength and failure mode of ceramic multilayers , 1998 .

[9]  John B. Goodenough,et al.  Solid Oxide Fuel Cell Technology: Principles, Performance and Operations , 2009 .

[10]  A. Gubner Investigations into the Degradation of the Cermet Anode of a Solid Oxide Fuel Cell , 1997 .

[11]  Mogens Bjerg Mogensen,et al.  Detailed Characterization of Anode-Supported SOFCs by Impedance Spectroscopy , 2007 .

[12]  S. Jiang,et al.  Sintering behavior of Ni/Y2O3-ZrO2cermet electrodes of solid oxide fuel cells , 2003 .

[13]  R. Farraro,et al.  Temperature dependence of the Young’s modulus and shear modulus of pure nickel, platinum, and molybdenum , 1977 .

[14]  K. Jensen The Ni-YSZ interface: Structure, composition and electrochemical properties at 1000°C , 2002 .

[15]  Boris Iwanschitz,et al.  Microstructure degradation of cermet anodes for solid oxide fuel cells: Quantification of nickel grain growth in dry and in humid atmospheres , 2011 .

[16]  T. Takagi,et al.  Kinetic studies of the reaction at the nickel pattern electrode on YSZ in H2H2O atmospheres , 1994 .

[17]  Masamichi Ippommatsu,et al.  Preparation of Nickel Pattern Electrodes on YSZ and Their Electrochemical Properties in  H 2 ‐  H 2 O  Atmospheres , 1994 .

[18]  E. Achenbach Three-dimensional and time-dependent simulation of a planar solid oxide fuel cell stack , 1994 .

[19]  H. Takagi,et al.  EFFECTIVE ELECTRODE REACTION AREA OF COFIRED TYPE PLANAR SOFC , 1996 .

[20]  S. C. Singhal,et al.  Recent progress in tubular solid oxide fuel cell technology , 1997 .

[21]  M. Faucher,et al.  Laser-induced polarized fluorescence in cubic yttrium sesquioxide doped with trivalent europium , 1979 .

[22]  J. Vohs,et al.  Highly Sulfur Tolerant Cu-Ceria Anodes for SOFCs , 2005 .

[23]  S. Primdahl nickel/yttria-stabilised zirconia cermet anodes for solid oxide fuel cells , 1999 .

[24]  M. Kleitz,et al.  Electrocatalysis and inductive effects at the gas, Pt/stabilized zirconia interface , 1987 .

[25]  N. Christiansen,et al.  Sites for catalysis and electrochemistry in solid oxide fuel cell (SOFC) anode , 2006 .

[26]  J. Van herle,et al.  Nickel–Zirconia Anode Degradation and Triple Phase Boundary Quantification from Microstructural Analysis , 2009 .

[27]  M. J. Powell Site percolation in randomly packed spheres , 1979 .

[28]  Meilin Liu,et al.  Sulfur Poisoning and Regeneration of Ni-Based Anodes in Solid Oxide Fuel Cells , 2007 .

[29]  E. Ivers-Tiffée,et al.  Development of a multilayer anode for solid oxide fuel cells , 2002 .

[30]  S. Linderoth,et al.  Interaction of NiO with yttria-stabilized zirconia , 1997 .

[31]  A. Virkar,et al.  Theoretical analysis of solid oxide fuel cells: The effect of electrode characteristics , 1995 .

[32]  Mikko Pihlatie,et al.  Testing and improving the redox stability of Ni-based solid oxide fuel cells , 2009 .

[33]  John Bøgild Hansen,et al.  Correlating Sulfur Poisoning of SOFC Nickel Anodes by a Temkin Isotherm , 2008 .

[34]  B. De Boer,et al.  SOFC Anode : Hydrogen Oxidation at Porous Nickel and Nickel/Yttria-Stabilised Zirconia Cermet Electrodes , 1998 .

[35]  Raymond J. Gorte,et al.  Novel SOFC anodes for the direct electrochemical oxidation of hydrocarbons , 2003 .

[36]  Peter Vang Hendriksen,et al.  Degradation of Anode Supported SOFCs as a Function of Temperature and Current Load , 2006 .

[37]  A. Bieberle,et al.  The electrochemistry of solid oxide fuel cell anodes , 2000 .

[38]  A. N. Busawon,et al.  Ni Infiltration as a Possible Solution to the Redox Problem of SOFC Anodes , 2008 .

[39]  A. Atkinson,et al.  Oxidation failure modes of anode-supported solid oxide fuel cells , 2008 .

[40]  I. Vinke,et al.  Reaction of hydrogen/water mixtures on nickel-zirconia cermet electrodes. II. AC polarization characteristics , 1999 .

[41]  Mogens Bjerg Mogensen,et al.  A Critical Review of Models of the H2/H2O/Ni/SZ Electrode Kinetics , 2007, ECS Transactions.

[42]  Mogens Bjerg Mogensen,et al.  The Mechanism Behind Redox Instability of Anodes in High-Temperature SOFCs , 2005 .

[43]  Tohru Yamamoto,et al.  Improved Microstructure of Ni-YSZ Cermet Anode for SOFC with a Long Term Stability , 1996 .

[44]  Marco Cannarozzo,et al.  Experimental and Theoretical Investigation of Degradation Mechanisms by Particle Coarsening in SOFC Electrodes , 2009 .

[45]  Jianmin Qu,et al.  Effective modulus and coefficient of thermal expansion of Ni-YSZ porous cermets , 2008 .

[46]  E. Riensche,et al.  Methane/steam reforming kinetics for solid oxide fuel cells , 1994 .

[47]  Ellen Ivers-Tiffée,et al.  Combined Deconvolution and CNLS Fitting Approach Applied on the Impedance Response of Technical Ni ∕ 8YSZ Cermet Electrodes , 2008 .

[48]  K. Sasaki,et al.  H2S Poisoning of Solid Oxide Fuel Cells , 2006 .

[49]  Mogens Bjerg Mogensen,et al.  Ni/YSZ electrode degradation studied by impedance spectroscopy: Effects of gas cleaning and current density , 2010 .

[50]  M. Vázquez,et al.  Size effect and surface tension measurements in Ni and Co nanowires , 2007 .

[51]  A. Hagen,et al.  Break Down of Losses in Thin Electrolyte SOFCs , 2006 .

[52]  Jens R. Rostrup-Nielsen,et al.  Catalytic Steam Reforming , 1984 .

[53]  K. Thydén,et al.  Stability of Ni–yttria stabilized zirconia anodes based on Ni-impregnation , 2010 .

[54]  Tohru Yamamoto,et al.  Thermal Expansion of Nickel‐Zirconia Anodes in Solid Oxide Fuel Cells during Fabrication and Operation , 1998 .

[55]  D. Dees,et al.  Conductivity of porous Ni/ZrO/sub 2/-Y/sub 2/O/sub 3/ cermets , 1987 .

[56]  Mogens Bjerg Mogensen,et al.  Reaction of CO/CO2 gas mixtures on Ni–YSZ cermet electrodes , 1999 .

[57]  P. S. Jørgensen,et al.  Ni/YSZ anode Effect of pre-treatments on cell degradation and microstructures , 2011 .

[58]  Mogens Bjerg Mogensen,et al.  H 2 ­ H 2 O ­ Ni ­ YSZ Electrode Performance Effect of Segregation to the Interface , 2004 .

[59]  Mogens Bjerg Mogensen,et al.  Structure/Performance Relations for Ni/Yttria‐Stabilized Zirconia Anodes for Solid Oxide Fuel Cells , 2000 .

[60]  Svein Sunde,et al.  Monte Carlo Simulations of Polarization Resistance of Composite Electrodes for Solid Oxide Fuel Cells , 1996 .

[61]  Mogens Bjerg Mogensen,et al.  Dimensional Behavior of Ni─YSZ Composites during Redox Cycling , 2009 .

[62]  Mogens Bjerg Mogensen,et al.  Gas Diffusion Impedance in Characterization of Solid Oxide Fuel Cell Anodes , 1999 .

[63]  J. Sehested,et al.  Four challenges for nickel steam-reforming catalysts , 2006 .

[64]  S. Ebbesen,et al.  Exceptional Durability of Solid Oxide Cells , 2010 .

[65]  R. N. Blumenthal,et al.  Electronic Transport in 8 Mole Percent Y[sub 2]O[sub 3]-ZrO[sub 2] , 1989 .

[66]  J. Sehested,et al.  Sintering of nickel catalysts: Effects of time, atmosphere, temperature, nickel-carrier interactions, and dopants , 2006 .

[67]  S. Singhal,et al.  Polarization Effects in Intermediate Temperature, Anode‐Supported Solid Oxide Fuel Cells , 1999 .

[68]  Tohru Yamamoto,et al.  Configurational and Electrical Behavior of Ni‐YSZ Cermet with Novel Microstructure for Solid Oxide Fuel Cell Anodes , 1997 .

[69]  R. Mark Ormerod Solid oxide fuel cells , 2003 .

[70]  A. Hagen,et al.  Ni/YSZ electrode degradation studied by impedance spectroscopy — Effect of p(H2O) , 2011 .