The ρ Ophiuchi region revisited with Gaia EDR3

Context. Young and embedded stellar populations are important probes of the star formation process. Paradoxically, we have a better census of nearby embedded young populations than the slightly more evolved optically visible young populations. The high accuracy measurements and all-sky coverage of Gaia data are about to change this situation. Aims. This work aims to construct the most complete sample to date of YSOs in the $\rho$ Oph region. Methods. We compile a catalog of 1114 Ophiuchus YSOs from the literature and crossmatch it with the Gaia EDR3, Gaia-ESO and APOGEE-2 surveys. We apply a multivariate classification algorithm to this catalog to identify new, co-moving population candidates. Results. We find 191 new high-fidelity YSO candidates in the Gaia EDR3 catalog belonging to the $\rho$ Oph region. The new sources appear to be mainly Class III M-stars and substellar objects and are less extincted than the known members. We find 28 previously unknown sources with disks. The analysis of the proper motion distribution of the entire sample reveals a well-defined bimodality, implying two distinct populations sharing a similar 3D volume. The first population comprises young stars' clusters around the $\rho$ Ophiuchi star and the main Ophiuchus clouds (L1688, L1689, L1709). In contrast, the second population is older ($\sim$ 10 Myr), dispersed, has a distinct proper motion, and is possibly from the Upper Sco group. The two populations are moving away from each other at about 4.1 km/s, and will no longer overlap in about 4 Myr. Finally, we flag 17 sources in the literature as impostors, which are sources that exhibit large deviations from the average distance and proper motion properties of the $\rho$ Oph population. Our results show the importance of accurate 3D space and motion information for improved stellar population analysis. (Abridged)

[1]  J. Alves,et al.  Extended stellar systems in the solar neighborhood , 2019, Astronomy & Astrophysics.

[2]  P. J. Richards,et al.  Gaia Early Data Release 3 , 2020, Astronomy & Astrophysics.

[3]  P. J. Richards,et al.  Gaia Early Data Release 3: Summary of the contents and survey properties , 2020, 2012.01533.

[4]  J. Alves,et al.  3D dynamics of the Orion cloud complex , 2020, 2007.07254.

[5]  K. Luhman,et al.  Refining the Census of the Upper Scorpius Association with Gaia , 2020, The Astronomical journal.

[6]  K. Luhman,et al.  A Survey for New Stars and Brown Dwarfs in the Ophiuchus Star-forming Complex , 2020, The Astronomical journal.

[7]  I. Bomze,et al.  Extended stellar systems in the solar neighborhood. IV. Meingast 1: the most massive stellar stream in the solar neighborhood. , 2020 .

[8]  A. Goodman,et al.  A compendium of distances to molecular clouds in the Star Formation Handbook , 2020, Astronomy & Astrophysics.

[9]  J. Alves,et al.  Discovery of nine new stellar groups in the Orion complex , 2019, 1905.11429.

[10]  T. Greene,et al.  A Radial Velocity Survey of Embedded Sources in the Rho Ophiuchi Cluster , 2019, The Astronomical Journal.

[11]  Anthony G. A. Brown,et al.  Stars that Move Together Were Born Together , 2019, The Astrophysical Journal.

[12]  U. Lammers,et al.  A census of $\rho$ Oph candidate members from Gaia DR2 , 2019, 1902.07600.

[13]  M. Lombardi,et al.  3D shape of Orion A from Gaia DR2 , 2018, Astronomy & Astrophysics.

[14]  New member candidates of Upper Scorpius from Gaia DR1 , 2018, Astronomy & Astrophysics.

[15]  T. A. Lister,et al.  Gaia Data Release 2. Summary of the contents and survey properties , 2018, 1804.09365.

[16]  Adrian M. Price-Whelan,et al.  Binary Companions of Evolved Stars in APOGEE DR14: Search Method and Catalog of ∼5000 Companions , 2018, The Astronomical Journal.

[17]  F. Le Petit,et al.  The chemistry of disks around T Tauri and Herbig Ae/Be stars. , 2018, Astronomy and astrophysics.

[18]  M. Lombardi,et al.  VISION - Vienna Survey in Orion , 2018, Astronomy & Astrophysics.

[19]  L. Girardi,et al.  A NEW GENERATION OF PARSEC-COLIBRI STELLAR ISOCHRONES INCLUDING THE TP-AGB PHASE , 2017, 1701.08510.

[20]  S. Bontemps,et al.  Proper motion survey and kinematic analysis of the ρ Ophiuchi embedded cluster , 2016, 1609.04963.

[21]  L. Hartmann,et al.  THE GOULD’S BELT DISTANCES SURVEY (GOBELINS). I. TRIGONOMETRIC PARALLAX DISTANCES AND DEPTH OF THE OPHIUCHUS COMPLEX , 2016, 1611.06466.

[22]  Gaia Collaboration,et al.  The Gaia mission , 2016, 1609.04153.

[23]  E. Mamajek,et al.  The star formation history and accretion-disc fraction among the K-type members of the Scorpius–Centaurus OB association , 2016, 1605.08789.

[24]  M. Meyer,et al.  The Gaia-ESO Survey: Dynamical Analysis of the L1688 region in Ophiuchus , 2016, 1601.05209.

[25]  A. Goodman,et al.  First stars of the ρ Ophiuchi dark cloud , 2016 .

[26]  D. Johnstone,et al.  YOUNG STELLAR OBJECTS IN THE GOULD BELT , 2015, 1508.03199.

[27]  Timothy A. Davis,et al.  THE 2014 ALMA LONG BASELINE CAMPAIGN: AN OVERVIEW , 2015 .

[28]  X. Koenig,et al.  A CLASSIFICATION SCHEME FOR YOUNG STELLAR OBJECTS USING THE WIDE-FIELD INFRARED SURVEY EXPLORER AllWISE CATALOG: REVEALING LOW-DENSITY STAR FORMATION IN THE OUTER GALAXY , 2014, 1407.2262.

[29]  E. Bertin,et al.  Orion revisited - II. The foreground population to Orion A , 2014, 1402.1034.

[30]  J. Alves,et al.  Orion revisited - I. The massive cluster in front of the Orion nebula cluster , 2012, 1209.3787.

[31]  L. Girardi,et al.  parsec: stellar tracks and isochrones with the PAdova and TRieste Stellar Evolution Code , 2012, 1208.4498.

[32]  M. Meyer,et al.  THE INITIAL MASS FUNCTION AND DISK FREQUENCY OF THE ρ OPHIUCHI CLOUD: AN EXTINCTION-LIMITED SAMPLE , 2011, 1109.0561.

[33]  Gaël Varoquaux,et al.  The NumPy Array: A Structure for Efficient Numerical Computation , 2011, Computing in Science & Engineering.

[34]  Martin G. Cohen,et al.  THE WIDE-FIELD INFRARED SURVEY EXPLORER (WISE): MISSION DESCRIPTION AND INITIAL ON-ORBIT PERFORMANCE , 2010, 1008.0031.

[35]  Robert Barkhouser,et al.  The Apache Point Observatory Galactic Evolution Experiment (APOGEE) , 2007, Astronomical Telescopes + Instrumentation.

[36]  W. Dehnen,et al.  Local kinematics and the local standard of rest , 2009, 0912.3693.

[37]  D. Padgett,et al.  THE SPITZER c2d LEGACY RESULTS: STAR-FORMATION RATES AND EFFICIENCIES; EVOLUTION AND LIFETIMES , 2008, 0811.1059.

[38]  M. Lombardi,et al.  Hipparcos distance estimates of the Ophiuchus and the Lupus cloud complexes , 2008, 0801.3346.

[39]  D. Padgett,et al.  The Spitzer c2d Survey of Large, Nearby, Interstellar Clouds. VII. Ophiuchus Observed with MIPS , 2007, 0709.3492.

[40]  John D. Hunter,et al.  Matplotlib: A 2D Graphics Environment , 2007, Computing in Science & Engineering.

[41]  M. Skrutskie,et al.  The Two Micron All Sky Survey (2MASS) , 2006 .

[42]  T. Greene,et al.  An Infrared Multiplicity Survey of Class I/Flat-Spectrum Systems in the ρ Ophiuchi and Serpens Molecular Clouds , 2002, astro-ph/0209224.

[43]  Mireille Louys,et al.  The ALADIN interactive sky atlas - A reference tool for identification of astronomical sources , 2000 .

[44]  F. Bonnarel,et al.  The SIMBAD astronomical database. The CDS reference database for astronomical objects , 2000, astro-ph/0002110.

[45]  G. Rieke,et al.  Low-Mass Star Formation and the Initial Mass Function in the ρ Ophiuchi Cloud Core , 1999, astro-ph/9905286.

[46]  M. Meyer,et al.  An Infrared Spectroscopic Survey of the rho Ophiuchi Young Stellar Cluster: Masses and Ages from the H-R Diagram , 1995 .

[47]  E. Young,et al.  Further Mid-Infrared Study of the rho Ophiuchi Cloud Young Stellar Population: Luminosities and Masses of Pre--Main-Sequence Stars , 1994 .

[48]  J. E. O'Donnell R(sub nu)-dependent optical and near-ultraviolet extinction , 1994 .

[49]  P. Andre',et al.  Submillimeter Continuum Observations of rho Ophiuchi A: The Candidate Protostar VLA 1623 and Prestellar Clumps , 1993 .

[50]  J. Mathis,et al.  The relationship between infrared, optical, and ultraviolet extinction , 1989 .

[51]  E. Young,et al.  IRAS Observations of the Rho Ophiuchi Infrared Cluster: Spectral Energy Distributions and Luminosity Function , 1989 .

[52]  M. Bessell,et al.  JHKLM PHOTOMETRY: STANDARD SYSTEMS, PASSBANDS, AND INTRINSIC COLORS , 1988 .

[53]  A. Wootten,et al.  Massive prestellar molecular core and adjacent compression front in the Rho Ophiuchi cloud , 1986 .

[54]  C. Lada,et al.  The nature of the embedded population in the Rho Ophiuchi dark cloud - Mid-infrared observations , 1984 .

[55]  C. Lada,et al.  The discovery of new embedded sources in the centrally condensed core of the Rho Ophiuchi dark cloud - The formation of a bound cluster , 1983 .

[56]  F. Vrba Role of magnetic fields in the evolution of five dark cloud complexes , 1977 .

[57]  B. T. Lynds Catalogue of Dark Nebulae. , 1962 .

[58]  R. A. Leibler,et al.  On Information and Sufficiency , 1951 .