A Superfamily of Voltage-gated Sodium Channels in Bacteria*

NaChBac, a six-α-helical transmembrane-spanning protein cloned from Bacillus halodurans, is the first functionally characterized bacterial voltage-gated Na+-selective channel (Ren, D., Navarro, B., Xu, H., Yue, L., Shi, Q., and Clapham, D. E. (2001) Science 294, 2372-2375). As a highly expressing ion channel protein, NaChBac is an ideal candidate for high resolution structural determination and structure-function studies. The biological role of NaChBac, however, is still unknown. In this report, another 11 structurally related bacterial proteins are described. Two of these functionally expressed as voltage-dependent Na+ channels (NaVPZ from Paracoccus zeaxanthinifaciens and NaVSP from Silicibacter pomeroyi). NaVPZ and NaVSP share ∼40% amino acid sequence identity with NaChBac. When expressed in mammalian cell lines, both NaVPZ and NaVSP were Na+-selective and voltage-dependent. However, their kinetics and voltage dependence differ significantly. These single six-α-helical transmembrane-spanning subunits constitute a widely distributed superfamily (NaVBac) of channels in bacteria, implying a fundamental prokaryotic function. The degree of sequence homology (22-54%) is optimal for future comparisons of NaVBac structure and function of similarity and dissimilarity among NaVBac proteins. Thus, the NaVBac superfamily is fertile ground for crystallographic, electrophysiological, and microbiological studies.

[1]  R. Weiner,et al.  Notes: Genus Hyphomonas Pongratz 1957 nom. rev. emend., Hyphomonas polymorpha Pongratz 1957 nom. rev. emend., and Hyphomonas neptunium (Leifson 1964) comb. nov. emend. (Hyphomicrobium neptunium) , 1984 .

[2]  T. A. Krulwich,et al.  The Na(+)-dependence of alkaliphily in Bacillus. , 2001, Biochimica et biophysica acta.

[3]  M. Saraste,et al.  FEBS Lett , 2000 .

[4]  Y. Imae,et al.  Na+-driven bacterial flagellar motors , 1989, Journal of bioenergetics and biomembranes.

[5]  J. M. González,et al.  Phylogenetic characterization of marine bacterium strain 2-40, a degrader of complex polysaccharides. , 2000, International journal of systematic and evolutionary microbiology.

[6]  H. Takami,et al.  Oceanobacillus iheyensis gen. nov., sp. nov., a deep-sea extremely halotolerant and alkaliphilic species isolated from a depth of 1050 m on the Iheya Ridge. , 2001, FEMS microbiology letters.

[7]  S. Kobayasi,et al.  [45] Sodium-driven flagellar motors of alkalophilic Bacillus , 1986 .

[8]  M. Homma,et al.  Ion-coupling determinants of Na+-driven and H+-driven flagellar motors. , 2003, Journal of molecular biology.

[9]  J. Fuhrman,et al.  Silicibacter pomeroyi sp. nov. and Roseovarius nubinhibens sp. nov., dimethylsulfoniopropionate-demethylating bacteria from marine environments. , 2003, International journal of systematic and evolutionary microbiology.

[10]  W. Catterall A One-Domain Voltage-Gated Sodium Channel in Bacteria , 2001, Science.

[11]  P. Vassilev,et al.  Identification of an intracellular peptide segment involved in sodium channel inactivation. , 1988, Science.

[12]  J. Deming,et al.  Motility of Colwellia psychrerythraea Strain 34H at Subzero Temperatures , 2003, Applied and Environmental Microbiology.

[13]  B. Bean,et al.  Subthreshold Sodium Currents and Pacemaking of Subthalamic Neurons Modulation by Slow Inactivation , 2003, Neuron.

[14]  B. Hille,et al.  Ionic channels of excitable membranes , 2001 .

[15]  B. Bean,et al.  Subthreshold Sodium Current from Rapidly Inactivating Sodium Channels Drives Spontaneous Firing of Tuberomammillary Neurons , 2002, Neuron.

[16]  G. Tomaselli,et al.  Molecular Architecture of the Voltage-Dependent Na Channel , 2001, The Journal of general physiology.

[17]  Gail Mandel,et al.  Nomenclature of Voltage-Gated Sodium Channels , 2000, Neuron.

[18]  L. Sivilotti,et al.  A tetrodotoxin-resistant voltage-gated sodium channel expressed by sensory neurons , 1996, Nature.

[19]  K. Horikoshi,et al.  Analysis of the genome of an alkaliphilic Bacillus strain from an industrial point of view , 2000, Extremophiles.

[20]  R. Frankel,et al.  Electron microscopy study of magnetosomes in a cultured coccoid magnetotactic bacterium , 1993, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[21]  Y. Imae,et al.  Relationship between Na+‐dependent cytoplasmic pH homeostasis and Na+‐dependent flagellar rotation and amino acid transport in alkalophilic Bacillus , 1985, FEBS letters.

[22]  D. Clapham,et al.  A Prokaryotic Voltage-Gated Sodium Channel , 2001, Science.

[23]  L. Pasamontes,et al.  Paracoccus zeaxanthinifaciens sp. nov., a zeaxanthin-producing bacterium. , 2003, International journal of systematic and evolutionary microbiology.

[24]  Gea-Ny Tseng,et al.  Structural and Functional Role of the Extracellular S5-P Linker in the HERG Potassium Channel , 2002, The Journal of general physiology.

[25]  N. Hirota,et al.  Na+-driven flagellar motors of an alkalophilic Bacillus strain YN-1. , 1983, The Journal of biological chemistry.

[26]  M. Homma,et al.  Na(+)-driven flagellar motor of Vibrio. , 2001, Biochimica et biophysica acta.

[27]  I. Booth Bacterial ion channels. , 2003, Genetic engineering.

[28]  M. Gouy,et al.  WWW-query: an on-line retrieval system for biological sequence banks. , 1996, Biochimie.

[29]  G. Yellen The voltage-gated potassium channels and their relatives , 2002, Nature.

[30]  D. Wilkin,et al.  Neuron , 2001, Brain Research.

[31]  Edward Moczydlowski,et al.  On the Structural Basis for Size-selective Permeation of Organic Cations through the Voltage-gated Sodium Channel , 1997, The Journal of general physiology.

[32]  T. Cross,et al.  A Taxonomic Study of Thermomonospora and Other Monosporic Actinomycetes , 1984 .

[33]  W. Catterall,et al.  From Ionic Currents to Molecular Mechanisms The Structure and Function of Voltage-Gated Sodium Channels , 2000, Neuron.

[34]  M. Strom,et al.  Epidemiology and pathogenesis of Vibrio vulnificus. , 2000, Microbes and infection.

[35]  L. McCarter Polar Flagellar Motility of theVibrionaceae , 2001, Microbiology and Molecular Biology Reviews.

[36]  T. A. Krulwich,et al.  Energetic problems of extremely alkaliphilic aerobes. , 1996, Biochimica et biophysica acta.

[37]  Michio Homma,et al.  The Polar Flagellar Motor of Vibrio cholerae Is Driven by an Na+ Motive Force , 1999, Journal of bacteriology.

[38]  D. Clapham,et al.  The Cation Selectivity Filter of the Bacterial Sodium Channel, NaChBac , 2002, The Journal of general physiology.