A Superfamily of Voltage-gated Sodium Channels in Bacteria*
暂无分享,去创建一个
David E. Clapham | D. Clapham | Haoxing Xu | Haoxing Xu | B. Spiller | Dejian Ren | Ryuta Koishi | Betsy Navarro | Benjamin W. Spiller | Qing Shi | R. Koishi | B. Navarro | Dejian Ren | Qing Shi
[1] R. Weiner,et al. Notes: Genus Hyphomonas Pongratz 1957 nom. rev. emend., Hyphomonas polymorpha Pongratz 1957 nom. rev. emend., and Hyphomonas neptunium (Leifson 1964) comb. nov. emend. (Hyphomicrobium neptunium) , 1984 .
[2] T. A. Krulwich,et al. The Na(+)-dependence of alkaliphily in Bacillus. , 2001, Biochimica et biophysica acta.
[3] M. Saraste,et al. FEBS Lett , 2000 .
[4] Y. Imae,et al. Na+-driven bacterial flagellar motors , 1989, Journal of bioenergetics and biomembranes.
[5] J. M. González,et al. Phylogenetic characterization of marine bacterium strain 2-40, a degrader of complex polysaccharides. , 2000, International journal of systematic and evolutionary microbiology.
[6] H. Takami,et al. Oceanobacillus iheyensis gen. nov., sp. nov., a deep-sea extremely halotolerant and alkaliphilic species isolated from a depth of 1050 m on the Iheya Ridge. , 2001, FEMS microbiology letters.
[7] S. Kobayasi,et al. [45] Sodium-driven flagellar motors of alkalophilic Bacillus , 1986 .
[8] M. Homma,et al. Ion-coupling determinants of Na+-driven and H+-driven flagellar motors. , 2003, Journal of molecular biology.
[9] J. Fuhrman,et al. Silicibacter pomeroyi sp. nov. and Roseovarius nubinhibens sp. nov., dimethylsulfoniopropionate-demethylating bacteria from marine environments. , 2003, International journal of systematic and evolutionary microbiology.
[10] W. Catterall. A One-Domain Voltage-Gated Sodium Channel in Bacteria , 2001, Science.
[11] P. Vassilev,et al. Identification of an intracellular peptide segment involved in sodium channel inactivation. , 1988, Science.
[12] J. Deming,et al. Motility of Colwellia psychrerythraea Strain 34H at Subzero Temperatures , 2003, Applied and Environmental Microbiology.
[13] B. Bean,et al. Subthreshold Sodium Currents and Pacemaking of Subthalamic Neurons Modulation by Slow Inactivation , 2003, Neuron.
[14] B. Hille,et al. Ionic channels of excitable membranes , 2001 .
[15] B. Bean,et al. Subthreshold Sodium Current from Rapidly Inactivating Sodium Channels Drives Spontaneous Firing of Tuberomammillary Neurons , 2002, Neuron.
[16] G. Tomaselli,et al. Molecular Architecture of the Voltage-Dependent Na Channel , 2001, The Journal of general physiology.
[17] Gail Mandel,et al. Nomenclature of Voltage-Gated Sodium Channels , 2000, Neuron.
[18] L. Sivilotti,et al. A tetrodotoxin-resistant voltage-gated sodium channel expressed by sensory neurons , 1996, Nature.
[19] K. Horikoshi,et al. Analysis of the genome of an alkaliphilic Bacillus strain from an industrial point of view , 2000, Extremophiles.
[20] R. Frankel,et al. Electron microscopy study of magnetosomes in a cultured coccoid magnetotactic bacterium , 1993, Proceedings of the Royal Society of London. Series B: Biological Sciences.
[21] Y. Imae,et al. Relationship between Na+‐dependent cytoplasmic pH homeostasis and Na+‐dependent flagellar rotation and amino acid transport in alkalophilic Bacillus , 1985, FEBS letters.
[22] D. Clapham,et al. A Prokaryotic Voltage-Gated Sodium Channel , 2001, Science.
[23] L. Pasamontes,et al. Paracoccus zeaxanthinifaciens sp. nov., a zeaxanthin-producing bacterium. , 2003, International journal of systematic and evolutionary microbiology.
[24] Gea-Ny Tseng,et al. Structural and Functional Role of the Extracellular S5-P Linker in the HERG Potassium Channel , 2002, The Journal of general physiology.
[25] N. Hirota,et al. Na+-driven flagellar motors of an alkalophilic Bacillus strain YN-1. , 1983, The Journal of biological chemistry.
[26] M. Homma,et al. Na(+)-driven flagellar motor of Vibrio. , 2001, Biochimica et biophysica acta.
[27] I. Booth. Bacterial ion channels. , 2003, Genetic engineering.
[28] M. Gouy,et al. WWW-query: an on-line retrieval system for biological sequence banks. , 1996, Biochimie.
[29] G. Yellen. The voltage-gated potassium channels and their relatives , 2002, Nature.
[30] D. Wilkin,et al. Neuron , 2001, Brain Research.
[31] Edward Moczydlowski,et al. On the Structural Basis for Size-selective Permeation of Organic Cations through the Voltage-gated Sodium Channel , 1997, The Journal of general physiology.
[32] T. Cross,et al. A Taxonomic Study of Thermomonospora and Other Monosporic Actinomycetes , 1984 .
[33] W. Catterall,et al. From Ionic Currents to Molecular Mechanisms The Structure and Function of Voltage-Gated Sodium Channels , 2000, Neuron.
[34] M. Strom,et al. Epidemiology and pathogenesis of Vibrio vulnificus. , 2000, Microbes and infection.
[35] L. McCarter. Polar Flagellar Motility of theVibrionaceae , 2001, Microbiology and Molecular Biology Reviews.
[36] T. A. Krulwich,et al. Energetic problems of extremely alkaliphilic aerobes. , 1996, Biochimica et biophysica acta.
[37] Michio Homma,et al. The Polar Flagellar Motor of Vibrio cholerae Is Driven by an Na+ Motive Force , 1999, Journal of bacteriology.
[38] D. Clapham,et al. The Cation Selectivity Filter of the Bacterial Sodium Channel, NaChBac , 2002, The Journal of general physiology.