A Sparse Multiscale Algorithm for Dense Optimal Transport

Discrete optimal transport solvers do not scale well on dense large problems since they do not explicitly exploit the geometric structure of the cost function. In analogy to continuous optimal transport, we provide a framework to verify global optimality of a discrete transport plan locally. This allows the construction of an algorithm to solve large dense problems by considering a sequence of sparse problems instead. The algorithm lends itself to being combined with a hierarchical multiscale scheme. Any existing discrete solver can be used as internal black-box. We explicitly describe how to select the sparse sub-problems for several cost functions, including the noisy squared Euclidean distance. Significant reductions in run-time and memory requirements have been observed.

[1]  Lei Zhu,et al.  Optimal Mass Transport for Registration and Warping , 2004, International Journal of Computer Vision.

[2]  Harold W. Kuhn,et al.  The Hungarian method for the assignment problem , 1955, 50 Years of Integer Programming.

[3]  LingHaibin,et al.  An Efficient Earth Mover's Distance Algorithm for Robust Histogram Comparison , 2007 .

[4]  Adam M. Oberman,et al.  An efficient linear programming method for Optimal Transportation , 2015, 1509.03668.

[5]  Michael Werman,et al.  Fast and robust Earth Mover's Distances , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[6]  Guillaume Carlier,et al.  From Knothe's Transport to Brenier's Map and a Continuation Method for Optimal Transport , 2008, SIAM J. Math. Anal..

[7]  Péter Kovács,et al.  LEMON - an Open Source C++ Graph Template Library , 2011, WGT@ETAPS.

[8]  David W. Jacobs,et al.  Approximate earth mover’s distance in linear time , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[9]  John N. Tsitsiklis,et al.  Introduction to linear optimization , 1997, Athena scientific optimization and computation series.

[10]  Andrew V. Goldberg,et al.  Finding Minimum-Cost Circulations by Successive Approximation , 1990, Math. Oper. Res..

[11]  Dirk Helbing,et al.  Modelling and Optimisation of Flows on Networks , 2013 .

[12]  M. Rumpf,et al.  A generalized model for optimal transport of images including dissipation and density modulation , 2015, 1504.01988.

[13]  R. McCann Polar factorization of maps on Riemannian manifolds , 2001 .

[14]  Christoph Schnörr,et al.  Globally Optimal Joint Image Segmentation and Shape Matching Based on Wasserstein Modes , 2014, Journal of Mathematical Imaging and Vision.

[15]  Yann Brenier,et al.  A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem , 2000, Numerische Mathematik.

[16]  Marco Cuturi Sinkhorn Distances: Lightspeed Computation of Optimal Transportation Distances , 2013, 1306.0895.

[17]  L. Ambrosio,et al.  A User’s Guide to Optimal Transport , 2013 .

[18]  P. Bernard,et al.  Optimal mass transportation and Mather theory , 2004, math/0412299.

[19]  Quentin Mérigot,et al.  A Multiscale Approach to Optimal Transport , 2011, Comput. Graph. Forum.

[20]  Gabriele Steidl,et al.  Transport Between RGB Images Motivated by Dynamic Optimal Transport , 2015, Journal of Mathematical Imaging and Vision.

[21]  Gustavo K. Rohde,et al.  A Linear Optimal Transportation Framework for Quantifying and Visualizing Variations in Sets of Images , 2012, International Journal of Computer Vision.

[22]  C. Villani Optimal Transport: Old and New , 2008 .

[23]  Ravindra K. Ahuja,et al.  Network Flows: Theory, Algorithms, and Applications , 1993 .

[24]  Haibin Ling,et al.  An Efficient Earth Mover's Distance Algorithm for Robust Histogram Comparison , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[25]  Bodo Rosenhahn,et al.  Bipartite Graph Matching Computation on GPU , 2009, EMMCVPR.

[26]  Adam M. Oberman,et al.  Numerical solution of the Optimal Transportation problem using the Monge-Ampère equation , 2012, J. Comput. Phys..

[27]  W. Gangbo,et al.  The geometry of optimal transportation , 1996 .

[28]  Y. Brenier Polar Factorization and Monotone Rearrangement of Vector-Valued Functions , 1991 .

[29]  Julien Rabin,et al.  Geodesic Shape Retrieval via Optimal Mass Transport , 2010, ECCV.

[30]  Carola-Bibiane Schönlieb,et al.  Regularized Regression and Density Estimation based on Optimal Transport , 2012 .

[31]  Bernhard Schmitzer A sparse algorithm for dense optimal transport , 2015, SSVM.

[32]  Gabriel Peyré,et al.  Iterative Bregman Projections for Regularized Transportation Problems , 2014, SIAM J. Sci. Comput..

[33]  Leonidas J. Guibas,et al.  The Earth Mover's Distance as a Metric for Image Retrieval , 2000, International Journal of Computer Vision.

[34]  Filippo Santambrogio,et al.  Optimal Transport for Applied Mathematicians , 2015 .

[35]  Christoph Schnörr,et al.  A Hierarchical Approach to Optimal Transport , 2013, SSVM.

[36]  Heinz H. Bauschke,et al.  Convex Analysis and Monotone Operator Theory in Hilbert Spaces , 2011, CMS Books in Mathematics.

[37]  Rainer E. Burkard,et al.  Perspectives of Monge Properties in Optimization , 1996, Discret. Appl. Math..