Study of the relationship between the local geometric structure and the stability of La0.6Sr0.4MnO3−δ and La0.6Sr0.4FeO3−δ electrodes

[1]  J. Chen,et al.  Controlling cation segregation in perovskite-based electrodes for high electro-catalytic activity and durability. , 2017, Chemical Society reviews.

[2]  Bilge Yildiz,et al.  Improved chemical and electrochemical stability of perovskite oxides with less reducible cations at the surface. , 2016, Nature materials.

[3]  N. Menzler,et al.  Formation of chromium containing impurities in (La,Sr)MnO3 solid-oxide-fuel-cell cathodes under stack operating conditions and its effect on performance , 2016 .

[4]  T. Ishihara,et al.  La0.8Sr0.2FeO3−δ as Fuel Electrode for Solid Oxide Reversible Cells Using LaGaO3-Based Oxide Electrolyte , 2016 .

[5]  S. Jiang,et al.  Highly chromium contaminant tolerant BaO infiltrated La0.6Sr0.4Co0.2Fe0.8O3-δ cathodes for solid oxide fuel cells. , 2015, Physical chemistry chemical physics : PCCP.

[6]  Z. Lü,et al.  Chromium deposition and poisoning at La0.6Sr0.4Co0.2Fe0.8O(3-δ) oxygen electrodes of solid oxide electrolysis cells. , 2015, Physical chemistry chemical physics : PCCP.

[7]  David S. McPhail,et al.  Surface termination and subsurface restructuring of perovskite-based solid oxide electrode materials , 2014 .

[8]  Mina Nishi,et al.  Sr and Zr diffusion in LSCF/10GDC/8YSZ triplets for solid oxide fuel cells (SOFCs) , 2014 .

[9]  John A. Kilner,et al.  Materials for Intermediate-Temperature Solid-Oxide Fuel Cells , 2014 .

[10]  Boxun Hu,et al.  Stability of strontium-doped lanthanum manganite cathode in humidified air , 2014 .

[11]  S. Jiang,et al.  Chromium deposition and poisoning of cathodes of solid oxide fuel cells – A review , 2014 .

[12]  T. Rojo,et al.  The Formation of Performance Enhancing Pseudo‐Composites in the Highly Active La1–xCaxFe0.8Ni0.2O3 System for IT‐SOFC Application , 2013 .

[13]  Dong Ding,et al.  Efficient Electro‐Catalysts for Enhancing Surface Activity and Stability of SOFC Cathodes , 2013 .

[14]  Bilge Yildiz,et al.  Cation size mismatch and charge interactions drive dopant segregation at the surfaces of manganite perovskites. , 2013, Journal of the American Chemical Society.

[15]  Dong Ding,et al.  Development of La0.6Sr0.4Co0.2Fe0.8O3−δ cathode with an improved stability via La0.8Sr0.2MnO3-film impregnation , 2013 .

[16]  Meilin Liu,et al.  Suppression of Sr surface segregation in La(1-x)Sr(x)Co(1-y)Fe(y)O(3-δ): a first principles study. , 2013, Physical chemistry chemical physics : PCCP.

[17]  J. Janek,et al.  In situ study of activation and de-activation of LSM fuel cell cathodes - Electrochemistry and surface analysis of thin-film electrodes , 2012 .

[18]  U. Bergmann,et al.  X-ray absorption investigation of the valence state and electronic structure of La1−xCaxCoO3−δ in comparison with La1−xSrxCoO3−δ and La1−xSrxFeO3−δ , 2011 .

[19]  Meilin Liu,et al.  Rational SOFC material design: new advances and tools , 2011 .

[20]  Y. Orikasa,et al.  Local structural analysis for oxide ion transport in La0.6Sr0.4FeO3−δ cathodes , 2011 .

[21]  Vladislav V. Kharton,et al.  Electrode materials and reaction mechanisms in solid oxide fuel cells: a brief review. III. Recent trends and selected methodological aspects , 2011 .

[22]  W. Harrison The origin of Sr segregation at La1-xSrxMnO3 surfaces , 2011, 1101.5414.

[23]  Meilin Liu,et al.  La0.6Sr0.4Co0.2Fe0.8O3-δ cathodes infiltrated with samarium-doped cerium oxide for solid oxide fuel cells , 2010 .

[24]  San Ping Jiang,et al.  Chromium deposition and poisoning in dry and humidified air at (La0.8Sr0.2)0.9MnO3+δ cathodes of solid oxide fuel cells , 2010 .

[25]  Xiao‐Qing Yang,et al.  The Fe K-edge X-ray absorption characteristics of La1−xSrxFeO3−δ prepared by solid state reaction , 2009 .

[26]  S. Jiang,et al.  Development of lanthanum strontium manganite perovskite cathode materials of solid oxide fuel cells: a review , 2008 .

[27]  T. Fister,et al.  In situ characterization of strontium surface segregation in epitaxial La0.7Sr0.3MnO3 thin films as a function of oxygen partial pressure , 2008 .

[28]  M. Mogensen,et al.  Electrochemical performance and degradation of (La0.6Sr0.4)0.99CoO3 − δ as porous SOFC-cathode , 2008 .

[29]  D. Brett,et al.  Intermediate temperature solid oxide fuel cells. , 2008, Chemical Society reviews.

[30]  Vladislav V. Kharton,et al.  Electrode materials and reaction mechanisms in solid oxide fuel cells: a brief review , 2008 .

[31]  E. Siebert,et al.  Investigation of chemisorbed oxygen, surface segregation and effect of post-treatments on La0.8Sr0.2MnO3 powder and screen-printed layers for solid oxide fuel cell cathodes , 2007 .

[32]  M. Mogensen,et al.  High-performance lanthanum-ferrite-based cathode for SOFC , 2005 .

[33]  S. Adler Factors governing oxygen reduction in solid oxide fuel cell cathodes. , 2004, Chemical reviews.

[34]  Zongping Shao,et al.  A high-performance cathode for the next generation of solid-oxide fuel cells , 2004, Nature.

[35]  S. Jiang,et al.  Issues on development of (La,Sr)MnO3 cathode for solid oxide fuel cells , 2003 .

[36]  Meilin Liu,et al.  Sm0.5Sr0.5CoO3 cathodes for low-temperature SOFCs , 2002 .

[37]  M Newville,et al.  IFEFFIT: interactive XAFS analysis and FEFF fitting. , 2001, Journal of synchrotron radiation.

[38]  F. Tietz,et al.  Correlation between thermal expansion and oxide ion transport in mixed conducting perovskite-type oxides for SOFC cathodes , 2000 .

[39]  K. Yoon,et al.  Enhanced oxygen diffusion in epitaxial lanthanum–strontium–cobaltite thin film cathodes for micro solid oxide fuel cells , 2013 .

[40]  I. Hung,et al.  Effect of La0.1Sr0.9Co0.5Mn0.5O3−δ protective coating layer on the performance of La0.6Sr0.4Co0.8Fe0.2O3−δ solid oxide fuel cell cathode , 2012 .