Largest parallelotopes contained in simplices

Abstract We establish in this paper a theorem for the volume of the largest parallelotope contained in a given simplex. Applying this theorem, we prove some inequalities for unions of parallelotopes in a given simplex and some spanning theorems for inscribed simplices.

[1]  I. Kuntz,et al.  Distance geometry. , 1989, Methods in enzymology.

[2]  Gert Vegter,et al.  Minimal circumscribing simplices , 1991 .

[3]  David M. Mount,et al.  A parallel algorithm for enclosed and enclosing triangles , 1992, Int. J. Comput. Geom. Appl..

[4]  Victor Klee,et al.  Largest j-simplices in d-cubes: Some relatives of the hadamard maximum determinant problem , 1996 .

[5]  Victor Klee,et al.  Finding the Smallest Triangles Containing a Given Convex Polygon , 1985, J. Algorithms.

[6]  Peter Gritzmann,et al.  Largest j-Simplices in n-Polytopes , 1994, Universität Trier, Mathematik/Informatik, Forschungsbericht.

[7]  Marek Lassak,et al.  Parallelotopes of Maximum Volume in a Simplex , 1999, Discret. Comput. Geom..