Localized dielectric breakdown and antireflection coating in metal-oxide-semiconductor photoelectrodes.

[1]  J. Switzer,et al.  An electrodeposited inhomogeneous metal-insulator-semiconductor junction for efficient photoelectrochemical water oxidation. , 2015, Nature materials.

[2]  Xunyu Lu,et al.  Electrodeposition of hierarchically structured three-dimensional nickel–iron electrodes for efficient oxygen evolution at high current densities , 2015, Nature Communications.

[3]  Li Ji,et al.  A silicon-based photocathode for water reduction with an epitaxial SrTiO3 protection layer and a nanostructured catalyst. , 2015, Nature nanotechnology.

[4]  Mohammad Khaja Nazeeruddin,et al.  Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth-abundant catalysts , 2014, Science.

[5]  Matthew R. Shaner,et al.  Amorphous TiO2 coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation , 2014, Science.

[6]  Li Ji,et al.  Integrated one diode-one resistor architecture in nanopillar SiOx resistive switching memory by nanosphere lithography. , 2014, Nano letters.

[7]  Hongjie Dai,et al.  High-Performance Silicon Photoanodes Passivated with Ultrathin Nickel Films for Water Oxidation. , 2014 .

[8]  Z. Ren,et al.  Efficient solar water-splitting using a nanocrystalline CoO photocatalyst. , 2014, Nature nanotechnology.

[9]  Michael Grätzel,et al.  Identifying champion nanostructures for solar water-splitting. , 2013, Nature materials.

[10]  N. Dasgupta,et al.  Atomic layer deposition of platinum catalysts on nanowire surfaces for photoelectrochemical water reduction. , 2013, Journal of the American Chemical Society.

[11]  Alexis T. Bell,et al.  An investigation of thin-film Ni-Fe oxide catalysts for the electrochemical evolution of oxygen. , 2013, Journal of the American Chemical Society.

[12]  C. Berlinguette,et al.  Water oxidation catalysis: electrocatalytic response to metal stoichiometry in amorphous metal oxide films containing iron, cobalt, and nickel. , 2013, Journal of the American Chemical Society.

[13]  Igor Levin,et al.  H2 evolution at Si-based metal-insulator-semiconductor photoelectrodes enhanced by inversion channel charge collection and H spillover. , 2013, Nature materials.

[14]  Tom Regier,et al.  An advanced Ni-Fe layered double hydroxide electrocatalyst for water oxidation. , 2013, Journal of the American Chemical Society.

[15]  Shimeng Yu,et al.  HfOx-based vertical resistive switching random access memory suitable for bit-cost-effective three-dimensional cross-point architecture. , 2013, ACS nano.

[16]  Ib Chorkendorff,et al.  Using TiO2 as a conductive protective layer for photocathodic H2 evolution. , 2013, Journal of the American Chemical Society.

[17]  S. Boettcher,et al.  Solution-cast metal oxide thin film electrocatalysts for oxygen evolution. , 2012, Journal of the American Chemical Society.

[18]  Jun Jiang,et al.  Water oxidation electrocatalyzed by an efficient Mn3O4/CoSe2 nanocomposite. , 2012, Journal of the American Chemical Society.

[19]  Zhenqiang Ma,et al.  Interface engineering by piezoelectric potential in ZnO-based photoelectrochemical anode. , 2011, Nano letters.

[20]  D. Nocera,et al.  Wireless Solar Water Splitting Using Silicon-Based Semiconductors and Earth-Abundant Catalysts , 2011, Science.

[21]  Se Stephen Potts,et al.  Plasma-Assisted Atomic Layer Deposition: Basics, Opportunities, and Challenges , 2011 .

[22]  Malgorzata Jurczak,et al.  A PEALD Tunnel Dielectric for Three-Dimensional Non-Volatile Charge-Trapping Technology , 2011 .

[23]  Yohan Park,et al.  Atomic layer-deposited tunnel oxide stabilizes silicon photoanodes for water oxidation. , 2011, Nature materials.

[24]  Ib Chorkendorff,et al.  Bioinspired molecular co-catalysts bonded to a silicon photocathode for solar hydrogen evolution. , 2011, Nature materials.

[25]  Xiaobo Chen,et al.  Increasing Solar Absorption for Photocatalysis with Black Hydrogenated Titanium Dioxide Nanocrystals , 2011, Science.

[26]  T. Jaramillo,et al.  A bifunctional nonprecious metal catalyst for oxygen reduction and water oxidation. , 2010, Journal of the American Chemical Society.

[27]  Michael Grätzel,et al.  Light-induced water splitting with hematite: improved nanostructure and iridium oxide catalysis. , 2010, Angewandte Chemie.

[28]  H. Kim,et al.  High-Quality Low-Temperature Silicon Oxide by Plasma-Enhanced Atomic Layer Deposition Using a Metal–Organic Silicon Precursor and Oxygen Radical , 2010, IEEE Electron Device Letters.

[29]  Nathan S. Lewis,et al.  Energy-Conversion Properties of Vapor—Liquid—Solid-Grown Silicon Wire-Array Photocathodes. , 2010 .

[30]  Nathan S. Lewis,et al.  Energy-Conversion Properties of Vapor-Liquid-Solid–Grown Silicon Wire-Array Photocathodes , 2010, Science.

[31]  A. Lebon,et al.  Initial oxidation of polycrystalline Permalloy surface , 2008 .

[32]  Kin Leong Pey,et al.  The nature of dielectric breakdown , 2008 .

[33]  Y. Nishi,et al.  Fermi-level depinning in metal/Ge Schottky junction and its application to metal source/drain Ge NMOSFET , 2008, 2008 Symposium on VLSI Technology.

[34]  D. Stewart,et al.  The missing memristor found , 2008, Nature.

[35]  C. Shan,et al.  Corrosion resistance of TiO2 films grown on stainless steel by atomic layer deposition , 2008 .

[36]  A. Torres-Huerta,et al.  Electrochemical performance of crystalline Ni–Co–Mo–Fe electrodes obtained by mechanical alloying on the oxygen evolution reaction , 2007 .

[37]  G. Ghibaudo,et al.  Review on high-k dielectrics reliability issues , 2005, IEEE Transactions on Device and Materials Reliability.

[38]  Yuan Chen,et al.  Detailed study and projection of hard breakdown evolution in ultra-thin gate oxides , 2005, Microelectron. Reliab..

[39]  Jin Ho Lee,et al.  Low‐Temperature Growth of SiO2 Films by Plasma‐Enhanced Atomic Layer Deposition , 2005 .

[40]  Young-Hee Kim,et al.  Reliability characteristics of high-k dielectrics , 2004, Microelectron. Reliab..

[41]  Jordi Suñé,et al.  Electron transport through broken down ultra-thin SiO2 layers in MOS devices , 2004, Microelectron. Reliab..

[42]  Peide D. Ye,et al.  GaAs metal–oxide–semiconductor field-effect transistor with nanometer-thin dielectric grown by atomic layer deposition , 2003 .

[43]  B. Weir,et al.  A study of soft and hard breakdown - Part II: Principles of area, thickness, and voltage scaling , 2002 .

[44]  Muhammad A. Alam,et al.  A study of soft and hard breakdown - Part I: Analysis of statistical percolation conductance , 2002 .

[45]  M. Kerber,et al.  Soft breakdown and hard breakdown in ultra-thin oxides , 2001, Microelectron. Reliab..

[46]  Turner,et al.  A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting , 1998, Science.

[47]  O. Teschke,et al.  Amorphous alloys as anodic and cathodic materials for alkaline water electrolysis , 1997 .

[48]  D. Corrigan,et al.  Effect of Coprecipitated Metal Ions on the Electrochemistry of Nickel Hydroxide Thin Films: Cyclic Voltammetry in 1 M KOH. , 1989 .

[49]  D. Corrigan The Catalysis of the Oxygen Evolution Reaction by Iron Impurities in Thin Film Nickel Oxide Electrodes , 1987 .

[50]  A. Bard,et al.  Semiconductor electrodes. 48. Photooxidation of halides and water on n-silicon protected with silicide layers , 1983 .

[51]  Gou-Chung Chi,et al.  The magnetoresistivity, structure, and magnetic anisotropy of RF sputtered and E‐beam evaporated NiFe films , 1981 .