The de Finetti theorem for test spaces

We prove a de Finetti theorem for exchangeable sequences of states on test spaces, where a test space is a generalization of the sample space of classical probability theory and the Hilbert space of quantum theory. The standard classical and quantum de Finetti theorems are obtained as special cases. By working in a test space framework, the common features that are responsible for the existence of these theorems are elucidated. In addition, the test space framework is general enough to imply a de Finetti theorem for classical processes. We conclude by discussing the ways in which our assumptions may fail, leading to probabilistic models that do not have a de Finetti theorem.

[1]  Tobias J Osborne,et al.  Finite de Finetti theorem for infinite-dimensional systems. , 2007, Physical review letters.

[2]  P. Parrilo,et al.  Complete family of separability criteria , 2003, quant-ph/0308032.

[3]  R. Hudson,et al.  Locally normal symmetric states and an analogue of de Finetti's theorem , 1976 .

[4]  Lawrence M. Ioannou,et al.  Computational complexity of the quantum separability problem , 2006, Quantum Inf. Comput..

[5]  B. M. Hill,et al.  Theory of Probability , 1990 .

[6]  Nicolas Gisin,et al.  The Physics of No-Bit-Commitment: Generalized Quantum Non-Locality Versus Oblivious Transfer , 2005, Quantum Inf. Process..

[7]  C. Fuchs,et al.  Quantum probabilities as Bayesian probabilities , 2001, quant-ph/0106133.

[8]  Bruno de Finetti Probabilità e induzione = Induction and probability , 1993 .

[9]  Frederic W. Shultz,et al.  A Characterization of State Spaces of Orthomodular Lattices , 1974, J. Comb. Theory A.

[10]  Alexander Wilce,et al.  Representations of D-posets , 1995 .

[11]  S. Massar,et al.  Nonlocal correlations as an information-theoretic resource , 2004, quant-ph/0404097.

[12]  C. Ross Found , 1869, The Dental register.

[13]  S. Popescu,et al.  Quantum nonlocality as an axiom , 1994 .

[14]  Graeme Mitchison,et al.  A most compendious and facile quantum de Finetti theorem , 2007 .

[15]  Anne Broadbent,et al.  On the power of non-local boxes , 2006, Theor. Comput. Sci..

[16]  L. J. Savage,et al.  The Foundation of Statistics , 1956 .

[17]  H. Barnum,et al.  Generalized no-broadcasting theorem. , 2007, Physical review letters.

[18]  L. Masanes,et al.  Interconversion of nonlocal correlations , 2005, quant-ph/0506182.

[19]  Robin L. Hudson Analogs of de Finetti's theorem and interpretative problems of quantum mechanics , 1981 .

[20]  D. J. Foulis,et al.  Operational statistics. II. Manuals of operations and their logics , 1973 .

[21]  Ruediger Schack,et al.  De Finetti representation theorem for quantum-process tomography (6 pages) , 2003, quant-ph/0307198.

[22]  Xu Li-ping,et al.  Quantum Information Processing in Quantum Wires , 2004 .

[23]  Jonathan Barrett Information processing in generalized probabilistic theories , 2005 .

[24]  Stefano Pironio,et al.  Nonlocal correlations as an information-theoretic resource (11 pages) , 2005 .

[25]  C. Fuchs,et al.  Unknown Quantum States: The Quantum de Finetti Representation , 2001, quant-ph/0104088.

[26]  P. Diaconis Finite forms of de Finetti's theorem on exchangeability , 1977, Synthese.

[27]  Joseph M. Renes,et al.  Gleason-Type Derivations of the Quantum Probability Rule for Generalized Measurements , 2004 .

[28]  P. Busch Quantum states and generalized observables: a simple proof of Gleason's theorem. , 1999, Physical review letters.

[29]  David Moore,et al.  Current Research in Operational Quantum Logic , 2000 .

[30]  D. Freedman,et al.  Finite Exchangeable Sequences , 1980 .

[31]  S. Pironio,et al.  Popescu-Rohrlich correlations as a unit of nonlocality. , 2005, Physical review letters.

[32]  Werner Stulpe,et al.  Phase‐space representations of general statistical physical theories , 1992 .

[33]  H. Buhrman,et al.  Limit on nonlocality in any world in which communication complexity is not trivial. , 2005, Physical review letters.

[34]  I. Pitowsky,et al.  Betting on the Outcomes of Measurements: A Bayesian Theory of Quantum Probability , 2002, quant-ph/0208121.

[35]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[36]  David P. DiVincenzo,et al.  Quantum information and computation , 2000, Nature.

[37]  W. Warmuth De Finetti, B.: Theory of Probability - A Critical Introductory Treatment, Volume 2. John Wiley & Sons, London-New York-Sydney-Toronto 1975. XIV, 375 S., £ 10.50 , 1977 .

[38]  C. H. Randall,et al.  Operational Statistics. I. Basic Concepts , 1972 .

[39]  A. Winter,et al.  Implications of superstrong non-locality for cryptography , 2005, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[40]  Nicolas Gisin,et al.  Entanglement swapping for generalized nonlocal correlations , 2005, quant-ph/0508120.

[41]  S. Gudder Effect test spaces and effect algebras , 1997 .

[42]  Pieter Kok Quantum information and computation web-corner , 2001, Quantum Inf. Comput..

[43]  Matthias Christandl,et al.  One-and-a-Half Quantum de Finetti Theorems , 2007 .

[44]  R. Renner,et al.  A de Finetti representation for finite symmetric quantum states , 2004, quant-ph/0410229.

[45]  Alexander Wilce,et al.  Test Spaces and Orthoalgebras , 2000 .