Design of area and power efficient digital FIR filter using modified MAC unit
暂无分享,去创建一个
G Lakshminarayanan | Koteswara Rao Nalluri | V Nithish Kumar | V. N. Kumar | G. Lakshminarayanan | Koteswar Nalluri
[1] Patrick Schaumont,et al. A new algorithm for elimination of common subexpressions , 1999, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..
[2] Keshab K. Parhi,et al. VLSI digital signal processing systems , 1999 .
[3] Douglas L. Maskell. Design of efficient multiplierless FIR filters , 2007, IET Circuits Devices Syst..
[4] Chein-Wei Jen,et al. A new hardware-efficient architecture for programmable FIR filters , 1996 .
[5] Naveen Kr. Gahlan. Implementation of Wallace Tree Multiplier Using Compressor , 2012 .
[6] Keshab K. Parhi,et al. VLSI digital signal processing systems , 1999 .
[7] Earl E. Swartzlander,et al. Computer Arithmetic , 1980 .
[8] O. Gustafsson,et al. Implementation of low complexity FIR filters using a minimum spanning tree , 2004, Proceedings of the 12th IEEE Mediterranean Electrotechnical Conference (IEEE Cat. No.04CH37521).
[9] A. Prasad Vinod,et al. New Reconfigurable Architectures for Implementing FIR Filters With Low Complexity , 2010, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.
[10] Mircea Vladutiu,et al. Computer Arithmetic , 2012, Springer Berlin Heidelberg.
[11] Mathini Sellathurai,et al. Low Power and Area Efficient Carry Select Adder , 2014, J. Low Power Electron..
[12] Ryan Kastner,et al. FPGA Implementation of High Speed FIR Filters Using Add and Shift Method , 2006, 2006 International Conference on Computer Design.
[13] Chiang-Ju Chien,et al. A novel common-subexpression-elimination method for synthesizing fixed-point FIR filters , 2004, IEEE Trans. Circuits Syst. I Regul. Pap..
[14] A. Dempster,et al. Use of minimum-adder multiplier blocks in FIR digital filters , 1995 .
[15] Earl E. Swartzlander,et al. A Reduced Complexity Wallace Multiplier Reduction , 2010, IEEE Transactions on Computers.
[16] Chip-Hong Chang,et al. Efficient algorithms for common subexpression elimination in digital filter design , 2004, 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing.
[17] O. Gustafsson,et al. A novel approach to multiple constant multiplication using minimum spanning trees , 2002, The 2002 45th Midwest Symposium on Circuits and Systems, 2002. MWSCAS-2002..
[18] Yinan Kong,et al. Low-Area Wallace Multiplier , 2014, VLSI Design.
[19] Kaushik Roy,et al. A graph theoretic approach for synthesizing very low-complexityhigh-speed digital filters , 2002, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..
[20] Behrooz Parhami,et al. Computer arithmetic - algorithms and hardware designs , 1999 .
[21] Chip-Hong Chang,et al. Low-power differential coefficients-based FIR filters using hardware-optimised multipliers , 2007, IET Circuits Devices Syst..
[22] R. Hartley. Subexpression sharing in filters using canonic signed digit multipliers , 1996 .
[23] Mathias Faust,et al. Minimal Logic Depth adder tree optimization for Multiple Constant Multiplication , 2010, Proceedings of 2010 IEEE International Symposium on Circuits and Systems.
[24] Y. Lim,et al. FIR filter design over a discrete powers-of-two coefficient space , 1983 .
[25] A. Prasad Vinod,et al. Low power and high-speed implementation of fir filters for software defined radio receivers , 2006, IEEE Transactions on Wireless Communications.
[26] Tzi-Dar Chiueh,et al. A Low-Power Digit-Based Reconfigurable FIR Filter , 2006, IEEE Transactions on Circuits and Systems II: Express Briefs.