Reconstructing the ecology of a Cretaceous cockroach: destructive and high-resolution imaging of its micro sensory organs

[1]  J. Hinkelman,et al.  Alienopterix Mlynský et al., 2018 complex in North Myanmar amber supports Umenocoleoidea/ae status , 2021, Biologia.

[2]  P. Eggleton,et al.  Order BLATTODEA , 2020, Britain's Insects.

[3]  D. Quicke,et al.  Nocticolid cockroaches are the only known dinosaur age cave survivors , 2020, Gondwana Research.

[4]  T. W. van de Kamp,et al.  Roach nectarivory, gymnosperm and earliest flower pollination evidence from Cretaceous ambers , 2020, Biologia.

[5]  Zongqing Wang,et al.  First record of Blattulidae from mid-Cretaceous Burmese amber (Insecta: Dictyoptera) , 2019, Cretaceous Research.

[6]  A. Ross,et al.  An ammonite trapped in Burmese amber , 2019, Proceedings of the National Academy of Sciences.

[7]  B. Misof,et al.  An integrative phylogenomic approach illuminates the evolutionary history of cockroaches and termites (Blattodea) , 2019, Proceedings of the Royal Society B.

[8]  K. Wakamatsu,et al.  Fossil insect eyes shed light on trilobite optics and the arthropod pigment screen , 2019, Nature.

[9]  Jianguo Li,et al.  Various amberground marine animals on Burmese amber with discussions on its age , 2018, Palaeoentomology.

[10]  H. Nishino,et al.  Two types of sensory proliferation patterns underlie the formation of spatially tuned olfactory receptive fields in the cockroach Periplaneta americana , 2018, The Journal of comparative neurology.

[11]  Martin N. Andersson,et al.  Diversity of olfactory structures: A comparative study of antennal sensilla in Trichoptera and Lepidoptera. , 2018, Micron.

[12]  N. Stork,et al.  How Many Species of Insects and Other Terrestrial Arthropods Are There on Earth? , 2018, Annual review of entomology.

[13]  J. Schneider,et al.  Evolution of reproductive strategies in dictyopteran insects – clues from ovipositor morphology of extinct roachoids , 2018 .

[14]  D. Grimaldi,et al.  A new genus of hell ants from the Cretaceous (Hymenoptera: Formicidae: Haidomyrmecini) with a novel head structure , 2017 .

[15]  D. Aristov,et al.  Temporary deleterious mass mutations relate to originations of cockroach families , 2017, Biologia.

[16]  M. Kúdela,et al.  New genus and species of cavernicolous cockroach (Blattaria, Nocticolidae) from Vietnam. , 2017, Zootaxa.

[17]  Faucheux,et al.  Sensory and glandular structures on the antennae of Mantis religiosa , Iris aratoria and Rivetina baetica : sexual dimorphism , physiological implications ( Mantodea : Mantidae ) , 2017 .

[18]  Bo,et al.  A catalogue of Burmite inclusions , 2017 .

[19]  C. Labandeira,et al.  Convergent evolution of ramified antennae in insect lineages from the Early Cretaceous of Northeastern China , 2016, Proceedings of the Royal Society B: Biological Sciences.

[20]  A. Yanagawa,et al.  Sexual difference in antennal sensilla abundance, density and size in Callosobruchus rhodesianus (Coleoptera: Chrysomelidae: Bruchinae) , 2016, Applied Entomology and Zoology.

[21]  J. Spaethe,et al.  Body size limits dim-light foraging activity in stingless bees (Apidae: Meliponini) , 2016, Journal of Comparative Physiology A.

[22]  G. Bechly,et al.  New predatory cockroaches (Insecta: Blattaria: Manipulatoridae fam.n.) from the Upper Cretaceous Myanmar amber , 2015 .

[23]  R. Kanzaki,et al.  Odorant Concentration Differentiator for Intermittent Olfactory Signals , 2014, The Journal of Neuroscience.

[24]  Bill S Hansson,et al.  Evolution of insect olfactory receptors , 2014, eLife.

[25]  Y. Toh,et al.  The antennal sensilla of the praying mantis Tenodera aridifolia: a new flagellar partition based on the antennal macro-, micro- and ultrastructures. , 2014, Arthropod structure & development.

[26]  M. Engel,et al.  Lower Cretaceous origin of long-distance mate finding behaviour in Hymenoptera (Insecta) , 2013 .

[27]  D. Grimaldi,et al.  Age constraint on Burmese amber based on U–Pb dating of zircons , 2012 .

[28]  Brett R. Scheffers,et al.  What we know and don't know about Earth's missing biodiversity. , 2012, Trends in ecology & evolution.

[29]  H. Nishino,et al.  Sensillum‐specific, topographic projection patterns of olfactory receptor neurons in the antennal lobe of the cockroach Periplaneta americana , 2012, The Journal of comparative neurology.

[30]  K. L. Barry,et al.  Mate location and antennal morphology in the praying mantid Hierodula majuscula , 2012 .

[31]  Paul Tafforeau,et al.  Virtual dissection using phase‐contrast X‐ray synchrotron microtomography: reducing the gap between fossils and extant species , 2011 .

[32]  D. Grimaldi,et al.  Reconstructing the anatomy of the 42-million-year-old fossil †Mengeatertiaria (Insecta, Strepsiptera) , 2010, Die Naturwissenschaften.

[33]  M. Mizunami,et al.  Functional and topographic segregation of glomeruli revealed by local staining of antennal sensory neurons in the honeybee Apis mellifera , 2009, The Journal of comparative neurology.

[34]  C. Arellano,et al.  Altricial Development in Subsocial Wood-Feeding Cockroaches , 2008, Zoological science.

[35]  M. Friedrich,et al.  Evolution of Insect Eyes: Tales of Ancient Heritage, Deconstruction, Reconstruction, Remodeling, and Recycling , 2008, Evolution: Education and Outreach.

[36]  V. Meyer-Rochow,et al.  Fine structural description of the compound eye of the Madagascar ‘hissing cockroach’Gromphadorhina portentosa (Dictyoptera: Blaberidae) , 2008 .

[37]  M. Faucheux Antennal sensilla of the male praying mantid Oxyothespis maroccana Bolivar, 1908 (Insecta: Mantodea: Mantidae): distribution and functional implications , 2008 .

[38]  G. Holwell,et al.  Mate location, antennal morphology, and ecology in two praying mantids (Insecta: Mantodea) , 2007 .

[39]  D. Grimaldi,et al.  New light shed on the oldest insect , 2004, Nature.

[40]  E. Peñalver,et al.  Taphonomy of insects in carbonates and amber , 2004 .

[41]  G. Ziegelberger,et al.  Immunolocalization of pheromone-binding protein and general odorant-binding protein in olfactory sensilla of the silk moths Antheraea and Bombyx , 1995, Cell and Tissue Research.

[42]  J. H. van Hateren,et al.  Pattern recognition in bees: orientation discrimination , 1990, Journal of Comparative Physiology A.

[43]  H. Sass Production, release and effectiveness of two female sex pheromone components ofPeriplaneta americana , 1983, Journal of comparative physiology.

[44]  R. Butler,et al.  The anatomy of the compound eye ofPeriplaneta americana L. , 1973, Journal of comparative physiology.

[45]  L. Schaller Structural and functional classification of antennal sensilla of the cockroach, Leucophaea maderae , 2004, Cell and Tissue Research.

[46]  M. Lambin Les sensilles de l'antenne chez quelques blattes et en particulier chez Blaberus craniifer (Burm.) , 2004, Zeitschrift für Zellforschung und Mikroskopische Anatomie.

[47]  R. Cruickshank,et al.  Geology of an amber locality in the Hukawng Valley, Northern Myanmar , 2003 .

[48]  D. Quicke,et al.  The oldest fossil insect sensilla , 2001 .

[49]  Masakazu Takahata,et al.  Exploration into the Adaptive Design of the Arthropod “Microbrain” , 1999 .

[50]  P. Weinstein,et al.  Antennal sensilla on cave species of Australian Paratemnopteryx cockroaches (Blattaria : Blattellidae) , 1998 .

[51]  Thomas A. Keil,et al.  Functional morphology of insect mechanoreceptors , 1997, Microscopy research and technique.

[52]  W. Gronenberg,et al.  Proprioceptors and fast antennal reflexes in the ant Odontomachus (Formicidae, Ponerinae) , 1997, Cell and Tissue Research.

[53]  J. Carlson,et al.  The Drosophila antenna: ultrastructural and physiological studies in wild-type and lozenge mutants , 1997, Journal of Comparative Physiology A.

[54]  Y. Toh,et al.  Fine structure of antennal sense organs of the male cockroach, Periplaneta americana. , 1977, Journal of ultrastructure research.

[55]  R. Schafer Antennal sense organs of the cockroach, Leucophaea maderae , 1971, Journal of morphology.