Reconstructing the ecology of a Cretaceous cockroach: destructive and high-resolution imaging of its micro sensory organs
暂无分享,去创建一个
[1] J. Hinkelman,et al. Alienopterix Mlynský et al., 2018 complex in North Myanmar amber supports Umenocoleoidea/ae status , 2021, Biologia.
[2] P. Eggleton,et al. Order BLATTODEA , 2020, Britain's Insects.
[3] D. Quicke,et al. Nocticolid cockroaches are the only known dinosaur age cave survivors , 2020, Gondwana Research.
[4] T. W. van de Kamp,et al. Roach nectarivory, gymnosperm and earliest flower pollination evidence from Cretaceous ambers , 2020, Biologia.
[5] Zongqing Wang,et al. First record of Blattulidae from mid-Cretaceous Burmese amber (Insecta: Dictyoptera) , 2019, Cretaceous Research.
[6] A. Ross,et al. An ammonite trapped in Burmese amber , 2019, Proceedings of the National Academy of Sciences.
[7] B. Misof,et al. An integrative phylogenomic approach illuminates the evolutionary history of cockroaches and termites (Blattodea) , 2019, Proceedings of the Royal Society B.
[8] K. Wakamatsu,et al. Fossil insect eyes shed light on trilobite optics and the arthropod pigment screen , 2019, Nature.
[9] Jianguo Li,et al. Various amberground marine animals on Burmese amber with discussions on its age , 2018, Palaeoentomology.
[10] H. Nishino,et al. Two types of sensory proliferation patterns underlie the formation of spatially tuned olfactory receptive fields in the cockroach Periplaneta americana , 2018, The Journal of comparative neurology.
[11] Martin N. Andersson,et al. Diversity of olfactory structures: A comparative study of antennal sensilla in Trichoptera and Lepidoptera. , 2018, Micron.
[12] N. Stork,et al. How Many Species of Insects and Other Terrestrial Arthropods Are There on Earth? , 2018, Annual review of entomology.
[13] J. Schneider,et al. Evolution of reproductive strategies in dictyopteran insects – clues from ovipositor morphology of extinct roachoids , 2018 .
[14] D. Grimaldi,et al. A new genus of hell ants from the Cretaceous (Hymenoptera: Formicidae: Haidomyrmecini) with a novel head structure , 2017 .
[15] D. Aristov,et al. Temporary deleterious mass mutations relate to originations of cockroach families , 2017, Biologia.
[16] M. Kúdela,et al. New genus and species of cavernicolous cockroach (Blattaria, Nocticolidae) from Vietnam. , 2017, Zootaxa.
[17] Faucheux,et al. Sensory and glandular structures on the antennae of Mantis religiosa , Iris aratoria and Rivetina baetica : sexual dimorphism , physiological implications ( Mantodea : Mantidae ) , 2017 .
[18] Bo,et al. A catalogue of Burmite inclusions , 2017 .
[19] C. Labandeira,et al. Convergent evolution of ramified antennae in insect lineages from the Early Cretaceous of Northeastern China , 2016, Proceedings of the Royal Society B: Biological Sciences.
[20] A. Yanagawa,et al. Sexual difference in antennal sensilla abundance, density and size in Callosobruchus rhodesianus (Coleoptera: Chrysomelidae: Bruchinae) , 2016, Applied Entomology and Zoology.
[21] J. Spaethe,et al. Body size limits dim-light foraging activity in stingless bees (Apidae: Meliponini) , 2016, Journal of Comparative Physiology A.
[22] G. Bechly,et al. New predatory cockroaches (Insecta: Blattaria: Manipulatoridae fam.n.) from the Upper Cretaceous Myanmar amber , 2015 .
[23] R. Kanzaki,et al. Odorant Concentration Differentiator for Intermittent Olfactory Signals , 2014, The Journal of Neuroscience.
[24] Bill S Hansson,et al. Evolution of insect olfactory receptors , 2014, eLife.
[25] Y. Toh,et al. The antennal sensilla of the praying mantis Tenodera aridifolia: a new flagellar partition based on the antennal macro-, micro- and ultrastructures. , 2014, Arthropod structure & development.
[26] M. Engel,et al. Lower Cretaceous origin of long-distance mate finding behaviour in Hymenoptera (Insecta) , 2013 .
[27] D. Grimaldi,et al. Age constraint on Burmese amber based on U–Pb dating of zircons , 2012 .
[28] Brett R. Scheffers,et al. What we know and don't know about Earth's missing biodiversity. , 2012, Trends in ecology & evolution.
[29] H. Nishino,et al. Sensillum‐specific, topographic projection patterns of olfactory receptor neurons in the antennal lobe of the cockroach Periplaneta americana , 2012, The Journal of comparative neurology.
[30] K. L. Barry,et al. Mate location and antennal morphology in the praying mantid Hierodula majuscula , 2012 .
[31] Paul Tafforeau,et al. Virtual dissection using phase‐contrast X‐ray synchrotron microtomography: reducing the gap between fossils and extant species , 2011 .
[32] D. Grimaldi,et al. Reconstructing the anatomy of the 42-million-year-old fossil †Mengeatertiaria (Insecta, Strepsiptera) , 2010, Die Naturwissenschaften.
[33] M. Mizunami,et al. Functional and topographic segregation of glomeruli revealed by local staining of antennal sensory neurons in the honeybee Apis mellifera , 2009, The Journal of comparative neurology.
[34] C. Arellano,et al. Altricial Development in Subsocial Wood-Feeding Cockroaches , 2008, Zoological science.
[35] M. Friedrich,et al. Evolution of Insect Eyes: Tales of Ancient Heritage, Deconstruction, Reconstruction, Remodeling, and Recycling , 2008, Evolution: Education and Outreach.
[36] V. Meyer-Rochow,et al. Fine structural description of the compound eye of the Madagascar ‘hissing cockroach’Gromphadorhina portentosa (Dictyoptera: Blaberidae) , 2008 .
[37] M. Faucheux. Antennal sensilla of the male praying mantid Oxyothespis maroccana Bolivar, 1908 (Insecta: Mantodea: Mantidae): distribution and functional implications , 2008 .
[38] G. Holwell,et al. Mate location, antennal morphology, and ecology in two praying mantids (Insecta: Mantodea) , 2007 .
[39] D. Grimaldi,et al. New light shed on the oldest insect , 2004, Nature.
[40] E. Peñalver,et al. Taphonomy of insects in carbonates and amber , 2004 .
[41] G. Ziegelberger,et al. Immunolocalization of pheromone-binding protein and general odorant-binding protein in olfactory sensilla of the silk moths Antheraea and Bombyx , 1995, Cell and Tissue Research.
[42] J. H. van Hateren,et al. Pattern recognition in bees: orientation discrimination , 1990, Journal of Comparative Physiology A.
[43] H. Sass. Production, release and effectiveness of two female sex pheromone components ofPeriplaneta americana , 1983, Journal of comparative physiology.
[44] R. Butler,et al. The anatomy of the compound eye ofPeriplaneta americana L. , 1973, Journal of comparative physiology.
[45] L. Schaller. Structural and functional classification of antennal sensilla of the cockroach, Leucophaea maderae , 2004, Cell and Tissue Research.
[46] M. Lambin. Les sensilles de l'antenne chez quelques blattes et en particulier chez Blaberus craniifer (Burm.) , 2004, Zeitschrift für Zellforschung und Mikroskopische Anatomie.
[47] R. Cruickshank,et al. Geology of an amber locality in the Hukawng Valley, Northern Myanmar , 2003 .
[48] D. Quicke,et al. The oldest fossil insect sensilla , 2001 .
[49] Masakazu Takahata,et al. Exploration into the Adaptive Design of the Arthropod “Microbrain” , 1999 .
[50] P. Weinstein,et al. Antennal sensilla on cave species of Australian Paratemnopteryx cockroaches (Blattaria : Blattellidae) , 1998 .
[51] Thomas A. Keil,et al. Functional morphology of insect mechanoreceptors , 1997, Microscopy research and technique.
[52] W. Gronenberg,et al. Proprioceptors and fast antennal reflexes in the ant Odontomachus (Formicidae, Ponerinae) , 1997, Cell and Tissue Research.
[53] J. Carlson,et al. The Drosophila antenna: ultrastructural and physiological studies in wild-type and lozenge mutants , 1997, Journal of Comparative Physiology A.
[54] Y. Toh,et al. Fine structure of antennal sense organs of the male cockroach, Periplaneta americana. , 1977, Journal of ultrastructure research.
[55] R. Schafer. Antennal sense organs of the cockroach, Leucophaea maderae , 1971, Journal of morphology.