Proton conductivity of SO3 H-functionalized benzene-periodic mesoporous organosilica.

The proton conductivity of benzene-periodic mesoporous silica (PMO) materials functionalized with sulfonic acid groups is investigated using experimental and theoretical techniques. The SO(3) H functionalization of pristine benzene-PMO is realized by three different pathways based on a grafting method in which surface silanol groups and/or benzene rings are used to anchor SO(3) H groups for enhanced proton conductivity. The functionalized material is experimentally characterized using X-ray diffraction, small-angle neutron scattering, and argon adsorption isotherms. After pressing the functionalized benzene-PMOs into pellets, the proton conductivity is deduced from Bode plots of impedance spectra taken in the temperature range of 333-413 K at 100% relative humidity. Using quantum mechanical approaches for selected proton-conduction mechanisms, the free energy barriers for proton transport as well as the local water environment at the surface are calculated. These calculations indicate that different mechanisms from purely bulk water transport are important for the benzene-PMO proton conduction, in agreement with experimental data.

[1]  R. Marschall,et al.  Proton conductivity of ordered mesoporous materials containing aluminium , 2010 .

[2]  S. J. Singer,et al.  The Dissociated Amorphous Silica Surface: Model Development and Evaluation. , 2010, Journal of chemical theory and computation.

[3]  Bálint Aradi,et al.  The self-consistent charge density functional tight binding method applied to liquid water and the hydrated excess proton: benchmark simulations. , 2010, The journal of physical chemistry. B.

[4]  Tae Hoon Choi,et al.  Application of the SCC-DFTB method to H+(H2O)6, H+(H2O)21, and H+(H2O)22. , 2010, The journal of physical chemistry. B.

[5]  R. Marschall,et al.  Detailed Simulation and Characterization of Highly Proton Conducting Sulfonic Acid Functionalized Mesoporous Materials under Dry and Humidified Conditions , 2009 .

[6]  A. Feldhoff,et al.  Nanoparticles of mesoporous SO3H-functionalized Si-MCM-41 with superior proton conductivity. , 2009, Small.

[7]  T. Frauenheim,et al.  Modelling of Proton Diffusion in Immobilised Imidazole Systems for Application in Fuel Cells , 2008 .

[8]  R. Marschall,et al.  Insight into Proton Conduction of Immobilised Imidazole Systems Via Simulations and Impedance Spectroscopy , 2008 .

[9]  S. Kaliaguine,et al.  Sulfonic acid functionalized periodic mesostructured organosilica as heterogeneous catalyst , 2008 .

[10]  Carsten Kutzner,et al.  GROMACS 4:  Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation. , 2008, Journal of chemical theory and computation.

[11]  R. Marschall,et al.  Ordered Functionalized Silica Materials with High Proton Conductivity , 2007 .

[12]  Hao Hu,et al.  Simulating water with the self-consistent-charge density functional tight binding method: from molecular clusters to the liquid state. , 2007, The journal of physical chemistry. A.

[13]  T. Frauenheim,et al.  DFTB+, a sparse matrix-based implementation of the DFTB method. , 2007, The journal of physical chemistry. A.

[14]  J. R. Jurado,et al.  Transport properties of fast proton conducting mesoporous silica xerogels , 2007 .

[15]  J. Caro,et al.  Proton conductivity of sulfonic acid functionalised mesoporous materials , 2007 .

[16]  K. Schulten,et al.  Water-silica force field for simulating nanodevices. , 2006, The journal of physical chemistry. B.

[17]  M. Fröba,et al.  Silica-based mesoporous organic-inorganic hybrid materials. , 2006, Angewandte Chemie.

[18]  Alexander D. MacKerell,et al.  Development of an empirical force field for silica. Application to the quartz-water interface. , 2006, The journal of physical chemistry. B.

[19]  M. T. Colomer Nanoporous Anatase Thin Films as Fast Proton‐Conducting Materials , 2006 .

[20]  E. Tajkhorshid,et al.  Toward theoretical analysis of long-range proton transfer kinetics in biomolecular pumps. , 2006, The journal of physical chemistry. A.

[21]  Gerrit Groenhof,et al.  GROMACS: Fast, flexible, and free , 2005, J. Comput. Chem..

[22]  Akira Taguchi,et al.  Ordered mesoporous materials in catalysis , 2005 .

[23]  Jian Liu,et al.  Synthesis; characterization; and catalytic activity of sulfonic acid-functionalized periodic mesoporous organosilicas , 2004 .

[24]  S. Kaliaguine,et al.  Propyl- and arene-sulfonic acid functionalized periodic mesoporous organosilicas , 2004 .

[25]  H. Choi,et al.  Enhanced electrorheology of conducting polyaniline confined in MCM-41 channels. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[26]  M. Jaroniec,et al.  Argon Adsorption at 77 K as a Useful Tool for the Elucidation of Pore Connectivity in Ordered Materials with Large Cagelike Mesopores , 2003 .

[27]  Bénédicte Lebeau,et al.  Chemical strategies to design textured materials: from microporous and mesoporous oxides to nanonetworks and hierarchical structures. , 2002, Chemical reviews.

[28]  T. Ohsuna,et al.  An ordered mesoporous organosilica hybrid material with a crystal-like wall structure , 2002, Nature.

[29]  S. Kaliaguine,et al.  Solid electrolyte properties of sulfonic acid functionalized mesostructured porous silica , 2002 .

[30]  M. Antonietti,et al.  SANS investigation of nitrogen sorption in porous silica. , 2001 .

[31]  David E. Bernholdt,et al.  High performance computational chemistry: An overview of NWChem a distributed parallel application , 2000 .

[32]  K. Kaneko,et al.  Micropore Size Distribution of Activated Carbon Fiber Using the Density Functional Theory and Other Methods , 2000 .

[33]  G. Ozin,et al.  Periodic mesoporous organosilicas with organic groups inside the channel walls , 1999, Nature.

[34]  T. Ohsuna,et al.  Novel Mesoporous Materials with a Uniform Distribution of Organic Groups and Inorganic Oxide in Their Frameworks , 1999 .

[35]  M. Parrinello,et al.  The nature of the hydrated excess proton in water , 1999, Nature.

[36]  Sándor Suhai,et al.  Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties , 1998 .

[37]  M. Nogami,et al.  Proton Conduction in Porous Silica Glasses with High Water Content , 1998 .

[38]  Gao Qing Lu,et al.  Modification of MCM-41 by Surface Silylation with Trimethylchlorosilane and Adsorption Study , 1998 .

[39]  Ulrich Stimming,et al.  ELECTROPHYSICAL PROPERTIES OF POLYMER ELECTROLYTE MEMBRANES : A RANDOM NETWORK MODEL , 1997 .

[40]  H. Gies,et al.  Influence of the sorbate type on the XRD peak intensities of loaded MCM-41 , 1996 .

[41]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[42]  S. Kondo,et al.  Surface silanol groups of mesoporous silica FSM-16 , 1996 .

[43]  Shankar Kumar,et al.  Multidimensional free‐energy calculations using the weighted histogram analysis method , 1995, J. Comput. Chem..

[44]  Kari Laasonen,et al.  Ab initio molecular dynamics simulation of the solvation and transport of hydronium and hydroxyl ions in water , 1995 .

[45]  Kari Laasonen,et al.  Ab initio molecular dynamics simulation of the solvation and transport of H3O+ and OH- ions in water , 1995 .

[46]  Ross,et al.  Small-angle neutron-scattering studies of the fractal-like network formed during desorption and adsorption of water in porous materials. , 1994, Physical review. B, Condensed matter.

[47]  A. Becke A New Mixing of Hartree-Fock and Local Density-Functional Theories , 1993 .

[48]  J. B. Higgins,et al.  A new family of mesoporous molecular sieves prepared with liquid crystal templates , 1992 .

[49]  David A. Case,et al.  Dynamics of ligand escape from the heme pocket of myoglobin , 1988 .

[50]  Hoover,et al.  Canonical dynamics: Equilibrium phase-space distributions. , 1985, Physical review. A, General physics.

[51]  S. Nosé A unified formulation of the constant temperature molecular dynamics methods , 1984 .

[52]  J. Kirkwood Statistical Mechanics of Fluid Mixtures , 1935 .