Production to Order: Models and Rules for Production Planning

1. Introduction.- 1.1. Production to order.- 1.2. Description of the problem.- 1.3. The control rules.- 1.3.1. The control rules for the lead times.- 1.3.2. The control rules for the production planning.- 1.4. The performance of the control rules.- 1.5. Influences on the control rules.- 1.5.1. Influence of the market.- 1.5.2. Influence of the production facilities.- 1.6. The methods.- 1.7. Overview of the text.- 2. Preliminaries.- 2.1. The situation and the model.- 2.2. Costs as instruments for decision making.- 2.3. Control rules for production planning.- 2.4. Control rules for lead times and order acceptance.- 3. A Fixed Production Cycle.- 3.1. Introduction.- 3.2. Analysis of fixed production cycles.- 3.2.1. Extended gating cyclic service model.- 3.2.2. Normal gating cyclic service with strict capacity.- 3.2.3. Normal gating service with flexible capacity.- 4. Non Cyclic Methods for One Product Type.- 4.1. Introduction.- 4.2. Fixed lead times.- 4.2.1. Introduction.- 4.2.2. Description of the model.- 4.2.3. The optimal production policy.- 4.2.4. Heuristic procedures.- 4.2.4.1. Notation.- 4.2.4.2. The Silver-Meal approach.- 4.2.4.3. The Wagner-Whitin approach.- 4.2.4.4. The (x,T)-rule.- 4.2.5. Numerical results.- 4.2.5.1. Conclusions.- 4.2.6. Orders with different priorities.- 4.2.6.1. Introduction.- 4.2.6.2. Model.- 4.3. A fluctuating demand rate.- 4.3.1. Introduction.- 4.3.2. Model.- 4.3.3. Example of lateness-dependent demand.- 4.3.4. Numerical results.- 4.4. A decision rule for lead times.- 4.4.1. Introduction.- 4.4.2. The model.- 4.4.3. A cyclic approach.- 4.4.4. The dynamic programming rule.- 4.4.5. Simplified dynamic programming rule.- 4.4.6. Numerical results.- 5. Several Types of Products on One Machine.- 5.1. Introduction.- 5.1.1. Description of the model.- 5.1.2. Notation.- 5.2. No possibilities for working overtime.- 5.2.1 Introduction.- 5.2.2. Extended (x,T)-rule.- 5.2.2.1. Introduction to the extended (x,T)-rule.- 5.2.2.2. Formulation of the extended (x,T)-rule.- 5.2.3. The two-step rule.- 5.2.3.1. Introduction to the two-step rule.- 5.2.3.2. Formulation of the first part.- 5.2.3.3. Formulation of the second part.- 5.2.4. A semi-fixed cycle rule.- 5.2.4.1. Introduction.- 5.2.4.2. Determining a semi-fixed cycle.- 5.2.5. Numerical results.- 5.3. Situation in which extra capacity is available.- 5.3.1. Introduction.- 5.3.2. Extended overtime (x,T)-rule.- 5.3.2.1. Introduction to the extended overtime (x,T)-rule.- 5.3.2.2. Formulation of the extended overtime (x,T)-rule.- 5.3.3. The two-step overtime rule.- 5.3.4. The semi-fixed cycle rule.- 5.3.5. Numerical results.- 6. Analysis of Multi-Type Models.- 6.1. Introduction.- 6.2. The multi (x,T)-rule.- 6.2.1. Analysis of the multi (x,T)-rule.- 6.2.2. Numerical results.- 6.2.3. Other possibilities and conclusions.- 6.3. Continuous review model.- 6.3.1. Introduction.- 6.3.2. Production model.- 6.3.3. Decomposition model.- 6.3.4. Results for the normal extended service.- 6.3.5. Numerical results and comparison with fixed cycle.- 7. The (x,T)-Rule in Complex Situations.- 7.1. Description of the problem.- 7.2. The elements of the extended (x,T)-rule.- 7.2.1. The penalty points.- 7.2.2. The allocation of capacity.- 7.2.3. Planning on different machines.- 7.3. Determination of lead times.- 7.3.1. Acceptance of the lead times.- 7.4. Numerical results.- 8. Summary and Conclusions.- 8.1. Summary and conclusions.- References.

[1]  Sheldon M. Ross,et al.  Introduction to probability models , 1975 .

[2]  Kenneth R. Baker,et al.  An analysis of terminal conditions in rolling schedules , 1981 .

[3]  Roger C. Vergin,et al.  Scheduling Rules For The Multiple Product Single Machine System With Stochastic Demand , 1978 .

[4]  Kym Watson,et al.  Performance Evaluation of Cyclic Service Strategies - A Survey , 1984, International Symposium on Computer Modeling, Measurement and Evaluation.

[5]  Amedeo R. Odoni,et al.  On Finding the Maximal Gain for Markov Decision Processes , 1969, Oper. Res..

[6]  M. W. B. Townsend Decision Rules for Inventory Management , 1968 .

[7]  Nico P. Dellaert The use of the (x,T)-strategy for production to order , 1987 .

[8]  G. Boyd Swartz Polling in a Loop System , 1980, JACM.

[9]  Martin Eisenberg,et al.  Queues with Periodic Service and Changeover Time , 1972, Oper. Res..

[10]  N. Adam,et al.  The Dynamic Lot-Sizing Problem for Multiple Items Under Limited Capacity , 1981 .

[11]  Graham K. Rand,et al.  Decision Systems for Inventory Management and Production Planning , 1979 .

[12]  Birger Rapp,et al.  Computerization of manufacturing planning and control systems: Minicomputer-based systems 1980-1987 , 1989 .

[13]  E. Silver,et al.  A heuristic solution procedure for the multi-item, single-level, limited capacity, lot-sizing problem , 1981 .

[14]  M. Lambrecht,et al.  Heuristic Procedures for the Single Operation, Multi-Item Loading Problem , 1979 .

[15]  J Jaap Wessels,et al.  Multi item lot size determination and scheduling under capacity constraints , 1976 .

[16]  Gabriel R. Bitran,et al.  Hierarchical Production Planning: A Single Stage System , 1981, Oper. Res..

[17]  Luk N. Van Wassenhove,et al.  A simple heuristic for the multi item single level capacitated lotsizing problem , 1986 .

[18]  Upendra Dave,et al.  Applied Probability and Queues , 1987 .

[19]  Ronald A. Howard,et al.  Dynamic Programming and Markov Processes , 1960 .

[20]  S. Graves The Multi-Product Production Cycling Problem , 1980 .

[21]  Kenneth R. Baker,et al.  AN EXPERIMENTAL STUDY OF THE EFFECTIVENESS OF ROLLING SCHEDULES IN PRODUCTION PLANNING , 1977 .