Overall Stresses and Strains in Solids with Microstructure

Within the context of the usual small deformation theory, the notions of overall stresses and strains associated with representative samples of solids with microstructure, e.g. polycrystalline aggregates and composites, are reviewed. The overall response of a finite solid with microstructure; and that of an infinitely extended solid with periodic microstructure, is examined considering both linearly elastic and nonlinearly creeping microconstituents. Then, estimates are given for the overall properties of solids containing randomly distributed microdefects; and, finally, the elastoplastic response of polycrystalline solids is discussed.

[1]  D. McLean,et al.  Grain boundaries in metals , 1958 .

[2]  T. Iwakuma,et al.  Finite elastic-plastic deformation of polycrystalline metals , 1984, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[3]  J. Willis,et al.  The overall elastic response of composite materials , 1983 .

[4]  Toshio Mura,et al.  Micromechanics of defects in solids , 1982 .

[5]  R. Hill On constitutive macro-variables for heterogeneous solids at finite strain , 1972, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[6]  J. D. Eshelby The determination of the elastic field of an ellipsoidal inclusion, and related problems , 1957, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[7]  B. Budiansky On the elastic moduli of some heterogeneous materials , 1965 .

[8]  Bernard Brunhes,et al.  W. VOIGT. — Ueber die Beziehung zwischen den beiden Elasticitätsconstanten isotroper Körper (Sur le rapport entre les deux coefficients d'élasticité des corps isotropes); Wied. Ann., t. XXXVIII, p. 573 , 1890 .

[9]  T. Iwakuma,et al.  Composites with periodic microstructure , 1983 .

[10]  Sia Nemat-Nasser,et al.  ON STATISTICAL DESCRIPTION OF STRESS AND FABRIC IN GRANULAR MATERIALS , 1982 .

[11]  L. Walpole,et al.  On the overall elastic moduli of composite materials , 1969 .

[12]  R. Hill Elastic properties of reinforced solids: some theoretical principles , 1963 .

[13]  A. Reuss,et al.  Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle . , 1929 .

[14]  Sia Nemat-Nasser,et al.  On composites with periodic structure , 1982 .

[15]  W. Voigt Ueber die Beziehung zwischen den beiden Elasticitätsconstanten isotroper Körper , 1889 .

[16]  J. Mackenzie,et al.  The Elastic Constants of a Solid containing Spherical Holes , 1950 .

[17]  E. H. Kerner The Elastic and Thermo-elastic Properties of Composite Media , 1956 .

[18]  Sia Nemat-Nasser,et al.  Overall moduli of solids with microcracks: Load-induced anisotropy , 1983 .

[19]  Joseph B. Keller,et al.  Effective elasticity tensor of a periodic composite , 1984 .

[20]  Arthur Beiser,et al.  Surveys in mechanics , 1956 .

[21]  John W. Hutchinson,et al.  Elastic-plastic behaviour of polycrystalline metals and composites , 1970, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[22]  J. Mandel,et al.  Contribution théorique à l’étude de l’écrouissage et des lois de l’écoulement plastique , 1966 .

[23]  S. Nemat-Nasser,et al.  A Micromechanical Description of Granular Material Behavior , 1981 .

[24]  T. Kê Experimental Evidence of the Viscous Behavior of Grain Boundaries in Metals , 1947 .

[25]  R. Hill Generalized constitutive relations for incremental deformation of metal crystals by multislip , 1966 .

[26]  Z. Hashin Analysis of Composite Materials—A Survey , 1983 .

[27]  M. Taya,et al.  On effective moduli of an elastic body containing periodically distributed voids , 1981 .

[28]  S. Nemat-Nasser On Finite Plastic Flow of Crystalline Solids and Geomaterials , 1983 .

[29]  E. Kröner Berechnung der elastischen Konstanten des Vielkristalls aus den Konstanten des Einkristalls , 1958 .

[30]  Rodney Hill,et al.  The essential structure of constitutive laws for metal composites and polycrystals , 1967 .

[31]  R. Hill,et al.  XLVI. A theory of the plastic distortion of a polycrystalline aggregate under combined stresses. , 1951 .

[32]  K. S. Havner Minimum plastic work selects the highest symmetry deformation in axially-loaded F.C.C. crystals , 1982 .

[33]  Bernard Budiansky,et al.  THEORETICAL PREDICTION OF PLASTIC STRAINS OF POLYCRYSTALS , 1961 .

[34]  Rodney Hill,et al.  Continuum micro-mechanics of elastoplastic polycrystals , 1965 .