Strang-type preconditioners for solving fractional diffusion equations by boundary value methods

The finite difference scheme with the shifted Grunwald formula is employed to semi-discrete the fractional diffusion equations. This spatial discretization can reduce to the large system of ordinary differential equations (ODEs) with initial values. Recently, the boundary value method (BVM) was developed as a popular algorithm for solving the large systems of ODEs. This method requires the solutions of one or more nonsymmetric and large-scale linear systems. In this paper, the GMRES method with the block circulant preconditioner is proposed to solve relevant linear systems. Some conclusions about the convergence analysis and spectrum of the preconditioned matrices are also drawn if the diffusion coefficients are constant. Finally, extensive numerical experiments are reported to show the performance of our method for solving the fractional diffusion equations.

[1]  Luisa Beghin,et al.  Fractional diffusion equations and processes with randomly varying time. , 2011, 1102.4729.

[2]  Daniele Bertaccini,et al.  Reliable preconditioned iterative linear solvers for some numerical integrators , 2001, Numer. Linear Algebra Appl..

[3]  Jian Bai,et al.  Fractional-Order Anisotropic Diffusion for Image Denoising , 2007, IEEE Transactions on Image Processing.

[4]  G. Strang,et al.  Toeplitz equations by conjugate gradients with circulant preconditioner , 1989 .

[5]  Siu-Long Lei,et al.  A circulant preconditioner for fractional diffusion equations , 2013, J. Comput. Phys..

[6]  Siu-Long Lei,et al.  BCCB preconditioners for systems of BVM‐based numerical integrators , 2004, Numer. Linear Algebra Appl..

[7]  David A. Benson,et al.  Subordinated advection‐dispersion equation for contaminant transport , 2001 .

[8]  Hong Wang,et al.  A fast characteristic finite difference method for fractional advection–diffusion equations , 2011 .

[9]  D. Benson,et al.  The fractional‐order governing equation of Lévy Motion , 2000 .

[10]  Diego A. Murio,et al.  Implicit finite difference approximation for time fractional diffusion equations , 2008, Comput. Math. Appl..

[11]  Enrico Scalas,et al.  Waiting-times and returns in high-frequency financial data: an empirical study , 2002, cond-mat/0203596.

[12]  Jonathan M. Blackledge,et al.  Diffusion and Fractional Diffusion Based Image Processing , 2009, TPCG.

[13]  M. Meerschaert,et al.  Finite difference approximations for fractional advection-dispersion flow equations , 2004 .

[14]  B. West Fractional Calculus in Bioengineering , 2007 .

[15]  Raymond H. Chan,et al.  An Introduction to Iterative Toeplitz Solvers (Fundamentals of Algorithms) , 2007 .

[16]  Lijuan Su,et al.  A High-Accuracy MOC/FD Method for Solving Fractional Advection-Diffusion Equations , 2013, J. Appl. Math..

[17]  Raymond H. Chan,et al.  Conjugate Gradient Methods for Toeplitz Systems , 1996, SIAM Rev..

[18]  Mehdi Dehghan,et al.  A high-order and unconditionally stable scheme for the modified anomalous fractional sub-diffusion equation with a nonlinear source term , 2013, J. Comput. Phys..

[19]  Allaberen Ashyralyev,et al.  On the Numerical Solution of Fractional Parabolic Partial Differential Equations with the Dirichlet Condition , 2012 .

[20]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[21]  Hai-Wei Sun,et al.  Multigrid method for fractional diffusion equations , 2012, J. Comput. Phys..

[22]  Mihály Kovács,et al.  Numerical solutions for fractional reaction-diffusion equations , 2008, Comput. Math. Appl..

[23]  Paolo Ghelardoni,et al.  Stability of some boundary value methods for IVPs , 1995 .

[24]  Donato Trigiante,et al.  Boundary value methods: The third way between linear multistep and Runge-Kutta methods , 1998 .

[25]  Donato Trigiante,et al.  Stability of some boundary value methods for the solution of initial value problems , 1993 .

[26]  Vickie E. Lynch,et al.  Anomalous diffusion and exit time distribution of particle tracers in plasma turbulence model , 2001 .

[27]  J. P. Roop Computational aspects of FEM approximation of fractional advection dispersion equations on bounded domains in R 2 , 2006 .

[28]  Raymond H. Chan,et al.  STRANG-TYPE PRECONDITIONERS FOR SOLVING SYS- TEMS OF ODES BY BOUNDARY VALUE METHODS , 2002 .

[29]  Norbert Heuer,et al.  Numerical Approximation of a Time Dependent, Nonlinear, Space-Fractional Diffusion Equation , 2007, SIAM J. Numer. Anal..

[30]  Han Zhou,et al.  Quasi-Compact Finite Difference Schemes for Space Fractional Diffusion Equations , 2012, J. Sci. Comput..

[31]  L. Brugnano,et al.  Solving differential problems by multistep initial and boundary value methods , 1998 .

[32]  S. R. Simanca,et al.  On Circulant Matrices , 2012 .

[33]  Cécile Piret,et al.  A radial basis functions method for fractional diffusion equations , 2013, J. Comput. Phys..

[34]  Mark M. Meerschaert,et al.  A second-order accurate numerical approximation for the fractional diffusion equation , 2006, J. Comput. Phys..

[35]  Huazhong Tang,et al.  High-Order Accurate Runge-Kutta (Local) Discontinuous Galerkin Methods for One- and Two-Dimensional Fractional Diffusion Equations , 2012 .

[36]  Nicholas Hale,et al.  An Efficient Implicit FEM Scheme for Fractional-in-Space Reaction-Diffusion Equations , 2012, SIAM J. Sci. Comput..

[37]  M. Meerschaert,et al.  Finite difference methods for two-dimensional fractional dispersion equation , 2006 .

[38]  Kassem Mustapha Numerical solution for a sub-diffusion equation with a smooth kernel , 2009, J. Comput. Appl. Math..

[39]  Fawang Liu,et al.  Numerical solution of the space fractional Fokker-Planck equation , 2004 .

[40]  B. Henry,et al.  The accuracy and stability of an implicit solution method for the fractional diffusion equation , 2005 .

[41]  Brian Clark,et al.  Physics in Oil Exploration , 2002 .

[42]  Zhaoxia Yang,et al.  Finite difference approximations for the fractional advection-diffusion equation , 2009 .

[43]  Weihua Deng,et al.  Finite Element Method for the Space and Time Fractional Fokker-Planck Equation , 2008, SIAM J. Numer. Anal..

[44]  D. Benson,et al.  Application of a fractional advection‐dispersion equation , 2000 .

[45]  A. Wathen,et al.  Iterative Methods for Toeplitz Systems , 2005 .

[46]  William McLean,et al.  Piecewise-linear, discontinuous Galerkin method for a fractional diffusion equation , 2011, Numerical Algorithms.

[47]  Daniele Bertaccini,et al.  A Circulant Preconditioner for the Systems of LMF-Based ODE Codes , 2000, SIAM J. Sci. Comput..

[48]  M MeerschaertMark,et al.  Finite difference methods for two-dimensional fractional dispersion equation , 2006 .

[49]  Hong Wang,et al.  A direct O(N log2 N) finite difference method for fractional diffusion equations , 2010, J. Comput. Phys..

[50]  Raymond H. Chan,et al.  Strang‐type preconditioners for systems of LMF‐based ODE codes , 2001 .

[51]  Daniel B. Szyld,et al.  An introduction to iterative Toeplitz solvers , 2009, Math. Comput..

[52]  M. Meerschaert,et al.  Finite difference approximations for two-sided space-fractional partial differential equations , 2006 .

[53]  J. G. Verwer,et al.  Boundary value techniques for initial value problems in ordinary differential equations , 1983 .

[54]  Stevens,et al.  Self-similar transport in incomplete chaos. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[55]  Ercília Sousa,et al.  Finite difference approximations for a fractional advection diffusion problem , 2009, J. Comput. Phys..

[56]  Gene H. Golub,et al.  A Preconditioner for Generalized Saddle Point Problems , 2004, SIAM J. Matrix Anal. Appl..

[57]  T. Chan An Optimal Circulant Preconditioner for Toeplitz Systems , 1988 .

[58]  M MeerschaertMark,et al.  Finite difference approximations for two-sided space-fractional partial differential equations , 2006 .

[59]  K. Mustapha An implicit finite-difference time-stepping method for a sub-diffusion equation, with spatial discretization by finite elements , 2011 .

[60]  Bruce J. West,et al.  Lévy dynamics of enhanced diffusion: Application to turbulence. , 1987, Physical review letters.

[61]  T. Kaczorek,et al.  Fractional Differential Equations , 2015 .

[62]  Fawang Liu,et al.  A Fourier method for the fractional diffusion equation describing sub-diffusion , 2007, J. Comput. Phys..