Strang-type preconditioners for solving fractional diffusion equations by boundary value methods
暂无分享,去创建一个
Ting-Zhu Huang | Xian-Ming Gu | Xi-Le Zhao | Liang Li | Hou-Biao Li | Tingzhu Huang | Xile Zhao | Liang Li | Hou-biao Li | Xianming Gu
[1] Luisa Beghin,et al. Fractional diffusion equations and processes with randomly varying time. , 2011, 1102.4729.
[2] Daniele Bertaccini,et al. Reliable preconditioned iterative linear solvers for some numerical integrators , 2001, Numer. Linear Algebra Appl..
[3] Jian Bai,et al. Fractional-Order Anisotropic Diffusion for Image Denoising , 2007, IEEE Transactions on Image Processing.
[4] G. Strang,et al. Toeplitz equations by conjugate gradients with circulant preconditioner , 1989 .
[5] Siu-Long Lei,et al. A circulant preconditioner for fractional diffusion equations , 2013, J. Comput. Phys..
[6] Siu-Long Lei,et al. BCCB preconditioners for systems of BVM‐based numerical integrators , 2004, Numer. Linear Algebra Appl..
[7] David A. Benson,et al. Subordinated advection‐dispersion equation for contaminant transport , 2001 .
[8] Hong Wang,et al. A fast characteristic finite difference method for fractional advection–diffusion equations , 2011 .
[9] D. Benson,et al. The fractional‐order governing equation of Lévy Motion , 2000 .
[10] Diego A. Murio,et al. Implicit finite difference approximation for time fractional diffusion equations , 2008, Comput. Math. Appl..
[11] Enrico Scalas,et al. Waiting-times and returns in high-frequency financial data: an empirical study , 2002, cond-mat/0203596.
[12] Jonathan M. Blackledge,et al. Diffusion and Fractional Diffusion Based Image Processing , 2009, TPCG.
[13] M. Meerschaert,et al. Finite difference approximations for fractional advection-dispersion flow equations , 2004 .
[14] B. West. Fractional Calculus in Bioengineering , 2007 .
[15] Raymond H. Chan,et al. An Introduction to Iterative Toeplitz Solvers (Fundamentals of Algorithms) , 2007 .
[16] Lijuan Su,et al. A High-Accuracy MOC/FD Method for Solving Fractional Advection-Diffusion Equations , 2013, J. Appl. Math..
[17] Raymond H. Chan,et al. Conjugate Gradient Methods for Toeplitz Systems , 1996, SIAM Rev..
[18] Mehdi Dehghan,et al. A high-order and unconditionally stable scheme for the modified anomalous fractional sub-diffusion equation with a nonlinear source term , 2013, J. Comput. Phys..
[19] Allaberen Ashyralyev,et al. On the Numerical Solution of Fractional Parabolic Partial Differential Equations with the Dirichlet Condition , 2012 .
[20] Y. Saad,et al. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .
[21] Hai-Wei Sun,et al. Multigrid method for fractional diffusion equations , 2012, J. Comput. Phys..
[22] Mihály Kovács,et al. Numerical solutions for fractional reaction-diffusion equations , 2008, Comput. Math. Appl..
[23] Paolo Ghelardoni,et al. Stability of some boundary value methods for IVPs , 1995 .
[24] Donato Trigiante,et al. Boundary value methods: The third way between linear multistep and Runge-Kutta methods , 1998 .
[25] Donato Trigiante,et al. Stability of some boundary value methods for the solution of initial value problems , 1993 .
[26] Vickie E. Lynch,et al. Anomalous diffusion and exit time distribution of particle tracers in plasma turbulence model , 2001 .
[27] J. P. Roop. Computational aspects of FEM approximation of fractional advection dispersion equations on bounded domains in R 2 , 2006 .
[28] Raymond H. Chan,et al. STRANG-TYPE PRECONDITIONERS FOR SOLVING SYS- TEMS OF ODES BY BOUNDARY VALUE METHODS , 2002 .
[29] Norbert Heuer,et al. Numerical Approximation of a Time Dependent, Nonlinear, Space-Fractional Diffusion Equation , 2007, SIAM J. Numer. Anal..
[30] Han Zhou,et al. Quasi-Compact Finite Difference Schemes for Space Fractional Diffusion Equations , 2012, J. Sci. Comput..
[31] L. Brugnano,et al. Solving differential problems by multistep initial and boundary value methods , 1998 .
[32] S. R. Simanca,et al. On Circulant Matrices , 2012 .
[33] Cécile Piret,et al. A radial basis functions method for fractional diffusion equations , 2013, J. Comput. Phys..
[34] Mark M. Meerschaert,et al. A second-order accurate numerical approximation for the fractional diffusion equation , 2006, J. Comput. Phys..
[35] Huazhong Tang,et al. High-Order Accurate Runge-Kutta (Local) Discontinuous Galerkin Methods for One- and Two-Dimensional Fractional Diffusion Equations , 2012 .
[36] Nicholas Hale,et al. An Efficient Implicit FEM Scheme for Fractional-in-Space Reaction-Diffusion Equations , 2012, SIAM J. Sci. Comput..
[37] M. Meerschaert,et al. Finite difference methods for two-dimensional fractional dispersion equation , 2006 .
[38] Kassem Mustapha. Numerical solution for a sub-diffusion equation with a smooth kernel , 2009, J. Comput. Appl. Math..
[39] Fawang Liu,et al. Numerical solution of the space fractional Fokker-Planck equation , 2004 .
[40] B. Henry,et al. The accuracy and stability of an implicit solution method for the fractional diffusion equation , 2005 .
[41] Brian Clark,et al. Physics in Oil Exploration , 2002 .
[42] Zhaoxia Yang,et al. Finite difference approximations for the fractional advection-diffusion equation , 2009 .
[43] Weihua Deng,et al. Finite Element Method for the Space and Time Fractional Fokker-Planck Equation , 2008, SIAM J. Numer. Anal..
[44] D. Benson,et al. Application of a fractional advection‐dispersion equation , 2000 .
[45] A. Wathen,et al. Iterative Methods for Toeplitz Systems , 2005 .
[46] William McLean,et al. Piecewise-linear, discontinuous Galerkin method for a fractional diffusion equation , 2011, Numerical Algorithms.
[47] Daniele Bertaccini,et al. A Circulant Preconditioner for the Systems of LMF-Based ODE Codes , 2000, SIAM J. Sci. Comput..
[48] M MeerschaertMark,et al. Finite difference methods for two-dimensional fractional dispersion equation , 2006 .
[49] Hong Wang,et al. A direct O(N log2 N) finite difference method for fractional diffusion equations , 2010, J. Comput. Phys..
[50] Raymond H. Chan,et al. Strang‐type preconditioners for systems of LMF‐based ODE codes , 2001 .
[51] Daniel B. Szyld,et al. An introduction to iterative Toeplitz solvers , 2009, Math. Comput..
[52] M. Meerschaert,et al. Finite difference approximations for two-sided space-fractional partial differential equations , 2006 .
[53] J. G. Verwer,et al. Boundary value techniques for initial value problems in ordinary differential equations , 1983 .
[54] Stevens,et al. Self-similar transport in incomplete chaos. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[55] Ercília Sousa,et al. Finite difference approximations for a fractional advection diffusion problem , 2009, J. Comput. Phys..
[56] Gene H. Golub,et al. A Preconditioner for Generalized Saddle Point Problems , 2004, SIAM J. Matrix Anal. Appl..
[57] T. Chan. An Optimal Circulant Preconditioner for Toeplitz Systems , 1988 .
[58] M MeerschaertMark,et al. Finite difference approximations for two-sided space-fractional partial differential equations , 2006 .
[59] K. Mustapha. An implicit finite-difference time-stepping method for a sub-diffusion equation, with spatial discretization by finite elements , 2011 .
[60] Bruce J. West,et al. Lévy dynamics of enhanced diffusion: Application to turbulence. , 1987, Physical review letters.
[61] T. Kaczorek,et al. Fractional Differential Equations , 2015 .
[62] Fawang Liu,et al. A Fourier method for the fractional diffusion equation describing sub-diffusion , 2007, J. Comput. Phys..