Smart biomimetic micro/nanostructures based on liquid crystal elastomers and networks.

A plethora of living organisms are equipped with smart functionalities that are usually rooted in their surface micro/nanostructures or underlying muscle tissues. Inspired by nature, extensive research efforts have been devoted to the development of novel biomimetic functional micro/nanostructured systems. Despite all the accomplishments, the emulation of biological adaptation and stimuli responsive actuation has been a longstanding challenge. The use of liquid crystal elastomers (LCEs) and networks (LCNs) for the fabrication of smart biomimetic micro/nanostructures has recently drawn extensive scientific attention and has become a growing field of research with promising prospects for emerging technologies. In this study, we review the recent progress in this field and portray the current challenges as well as the outlook of this field of research.

[1]  Luciano F Boesel,et al.  Bioinspired Actuated Adhesive Patterns of Liquid Crystalline Elastomers , 2012, Advanced materials.

[2]  C. Ohm,et al.  Template-based fabrication of nanometer-scaled actuators from liquid-crystalline elastomers. , 2011, Small.

[3]  P. Ajayan,et al.  Electromechanically Responsive Liquid Crystal Elastomer Nanocomposites for Active Cell Culture. , 2016, ACS macro letters.

[4]  H. Finkelmann,et al.  Nematic liquid single crystal elastomers , 1991 .

[5]  Hamed Shahsavan,et al.  Smart Muscle‐Driven Self‐Cleaning of Biomimetic Microstructures from Liquid Crystal Elastomers , 2015, Advanced materials.

[6]  Stanislav N. Gorb,et al.  Bioinspired photocontrollable microstructured transport device , 2017, Science Robotics.

[7]  T. Ikeda,et al.  Photomobile Liquid‐Crystalline Elastomers with Rearrangeable Networks , 2016, Advanced materials.

[8]  Ron Pelrine,et al.  High-Strain Actuator Materials Based on Dielectric Elastomers , 2000 .

[9]  Elisabetta A. Matsumoto,et al.  Biomimetic 4D printing. , 2016, Nature materials.

[10]  K. Harris,et al.  Thermo‐Mechanical Responses of Liquid‐Crystal Networks with a Splayed Molecular Organization , 2005 .

[11]  Ryan R. Kohlmeyer,et al.  Wavelength-selective, IR light-driven hinges based on liquid crystalline elastomer composites. , 2013, Angewandte Chemie.

[12]  Yanlei Yu,et al.  Light-controlled quick switch of adhesion on a micro-arrayed liquid crystal polymer superhydrophobic film , 2012 .

[13]  Hao Zeng,et al.  Light‐Driven Soft Robot Mimics Caterpillar Locomotion in Natural Scale , 2016 .

[14]  Taylor H. Ware,et al.  Liquid crystal elastomer actuators: Synthesis, alignment, and applications , 2017 .

[15]  N. Clark,et al.  Thiol‐acrylate main‐chain liquid‐crystalline elastomers with tunable thermomechanical properties and actuation strain , 2017 .

[16]  D. L. Ringo FLAGELLAR MOTION AND FINE STRUCTURE OF THE FLAGELLAR APPARATUS IN CHLAMYDOMONAS , 1967, The Journal of cell biology.

[17]  M. Textor,et al.  Surface engineering approaches to micropattern surfaces for cell-based assays. , 2006, Biomaterials.

[18]  Guanglong Wu,et al.  Thermoresponsive inverse opal films fabricated with liquid-crystal elastomers and nematic liquid crystals. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[19]  Laurens T. de Haan,et al.  Engineering of complex order and the macroscopic deformation of liquid crystal polymer networks. , 2012, Angewandte Chemie.

[20]  Shu Yang,et al.  Guided Folding of Nematic Liquid Crystal Elastomer Sheets into 3D via Patterned 1D Microchannels , 2016, Advanced materials.

[21]  P. Keller,et al.  Nematic Elastomer Fiber Actuator , 2003 .

[22]  E. Fukada History and recent progress in piezoelectric polymers , 2000, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[23]  Dirk J. Broer,et al.  Accordion‐like Actuators of Multiple 3D Patterned Liquid Crystal Polymer Films , 2014 .

[24]  Neelesh A Patankar,et al.  Transition between superhydrophobic states on rough surfaces. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[25]  K. Bertoldi,et al.  Dielectric Elastomer Based “Grippers” for Soft Robotics , 2015, Advanced materials.

[26]  J. Esteve,et al.  Liquid-crystalline elastomer micropillar array for haptic actuation , 2013 .

[27]  L. Freund,et al.  Isotropic “Islands” in a Cholesteric “Sea”: Patterned Thermal Expansion for Responsive Surface Topologies , 2006 .

[28]  Ximin He,et al.  Hydrogel-actuated integrated responsive systems (HAIRS): Moving towards adaptive materials , 2011 .

[29]  P. Palffy-Muhoray,et al.  Surface wrinkling in liquid crystal elastomers , 2012 .

[30]  Marcus L. Roper,et al.  Microscopic artificial swimmers , 2005, Nature.

[31]  R. N. Wenzel RESISTANCE OF SOLID SURFACES TO WETTING BY WATER , 1936 .

[32]  Yanlei Yu,et al.  Three‐Dimensional Photomobility of Crosslinked Azobenzene Liquid‐Crystalline Polymer Fibers , 2010, Advanced materials.

[33]  J. Cornelissen,et al.  Conversion of light into macroscopic helical motion. , 2014, Nature chemistry.

[34]  Metin Sitti,et al.  Biologically inspired polymer microfibers with spatulate tips as repeatable fibrillar adhesives , 2006 .

[35]  C. Ohm,et al.  Liquid Crystalline Elastomers as Actuators and Sensors , 2010, Advanced materials.

[36]  Hans Zappe,et al.  Iris‐Like Tunable Aperture Employing Liquid‐Crystal Elastomers , 2014, Advanced materials.

[37]  Yanlei Yu,et al.  Photocontrol of fluid slugs in liquid crystal polymer microactuators , 2016, Nature.

[38]  K. Suh,et al.  Stimuli-responsive hydrogel patterns for smart microfluidics and microarrays. , 2013, The Analyst.

[39]  Arri Priimagi,et al.  A light-driven artificial flytrap , 2017, Nature Communications.

[40]  Shu Yang,et al.  Buckling‐Based Strong Dry Adhesives Via Interlocking , 2013 .

[41]  E. Terentjev,et al.  Nematic elastomers with aligned carbon nanotubes: New electromechanical actuators , 2003, cond-mat/0309216.

[42]  R. Full,et al.  Adhesive force of a single gecko foot-hair , 2000, Nature.

[43]  P. Keller,et al.  Stimuli-responsive topological change of microstructured surfaces and the resultant variations of wetting properties. , 2013, ACS applied materials & interfaces.

[44]  Mihai Duduta,et al.  Multilayer Dielectric Elastomers for Fast, Programmable Actuation without Prestretch , 2016, Advanced materials.

[45]  V. Oosten Responsive liquid crystal networks , 2009 .

[46]  Yue Zhao,et al.  Tunable Photocontrolled Motions Using Stored Strain Energy in Malleable Azobenzene Liquid Crystalline Polymer Actuators , 2017, Advanced materials.

[47]  P. Keller,et al.  Single-layer dual-phase nematic elastomer films with bending, accordion-folding, curling and buckling motions. , 2017, Chemical communications.

[48]  H. Finkelmann,et al.  Magnetoactive liquid crystal elastomer nanocomposites , 2009 .

[49]  Yanlei Yu,et al.  NIR-light-induced deformation of cross-linked liquid-crystal polymers using upconversion nanophosphors. , 2011, Journal of the American Chemical Society.

[50]  J. E. Marshall,et al.  Nanoparticle-Liquid Crystalline Elastomer Composites , 2012 .

[51]  E. M. Terentjev,et al.  Infrared actuation in aligned polymer-nanotube composites , 2006, cond-mat/0602185.

[52]  C. Ohm,et al.  A Continuous Flow Synthesis of Micrometer‐Sized Actuators from Liquid Crystalline Elastomers , 2009, Advanced materials.

[53]  Dirk J. Broer,et al.  Liquid crystal polymer networks: switchable surface topographies , 2013 .

[54]  Metin Sitti,et al.  Enhanced adhesion by gecko-inspired hierarchical fibrillar adhesives. , 2009, ACS applied materials & interfaces.

[55]  Y. Osada,et al.  A polymer gel with electrically driven motility , 1992, Nature.

[56]  W. Huck,et al.  Thermal and UV shape shifting of surface topography. , 2006, Journal of the American Chemical Society.

[57]  E. Arzt,et al.  Temperature-Induced Switchable Adhesion using Nickel–Titanium–Polydimethylsiloxane Hybrid Surfaces , 2015, Advanced functional materials.

[58]  Xueqin Zhang,et al.  A room-temperature two-stage thiol–ene photoaddition approach towards monodomain liquid crystalline elastomers , 2017 .

[59]  D. Wiersma,et al.  Structured light enables biomimetic swimming and versatile locomotion of photoresponsive soft microrobots. , 2016, Nature materials.

[60]  Boxin Zhao,et al.  Biomimetic Modification of Polymeric Surfaces: A Promising Pathway for Tuning of Wetting and Adhesion , 2012 .

[61]  P. Palffy-Muhoray,et al.  Bent-Core Liquid Crystal Elastomers , 2010 .

[62]  A. Khademhosseini,et al.  Hydrogels in Biology and Medicine: From Molecular Principles to Bionanotechnology , 2006 .

[63]  W. Tan,et al.  Reverse adhesion of a gecko-inspired synthetic adhesive switched by an ion-exchange polymer-metal composite actuator. , 2015, ACS applied materials & interfaces.

[64]  D. Wiersma,et al.  Light-Fueled Microscopic Walkers , 2015, Advanced materials.

[65]  M. Shelley,et al.  Fast liquid-crystal elastomer swims into the dark , 2004, Nature materials.

[66]  Enrico Orselli,et al.  Electroactive polymers: developments of and perspectives for dielectric elastomers. , 2013, Angewandte Chemie.

[67]  Bharat Bhushan,et al.  Biomimetics: lessons from nature–an overview , 2009, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[68]  Huisheng Peng,et al.  Photoinduced deformation of crosslinked liquid-crystalline polymer film oriented by a highly aligned carbon nanotube sheet. , 2012, Angewandte Chemie.

[69]  D. Broer,et al.  INSITU PHOTOPOLYMERIZATION OF AN ORIENTED LIQUID-CRYSTALLINE ACRYLATE .2. , 1989 .

[70]  Fangfu Ye,et al.  Shape selection of twist-nematic-elastomer ribbons , 2011, Proceedings of the National Academy of Sciences.

[71]  Zhigang Suo,et al.  Multifunctional actuation systems responding to chemical gradients , 2012 .

[72]  C. Bowman,et al.  Photoresponsive Fiber Array: Toward Mimicking the Collective Motion of Cilia for Transport Applications , 2016 .

[73]  R. Zentel,et al.  One-piece micropumps from liquid crystalline core-shell particles , 2012, Nature Communications.

[74]  J. Aizenberg,et al.  Reversible Switching of Hydrogel-Actuated Nanostructures into Complex Micropatterns , 2007, Science.

[75]  Joanna Aizenberg,et al.  Bio‐inspired Design of Submerged Hydrogel‐Actuated Polymer Microstructures Operating in Response to pH , 2011, Advanced materials.

[76]  Lei Jiang,et al.  Bio‐Inspired, Smart, Multiscale Interfacial Materials , 2008 .

[77]  Ashutosh Sharma,et al.  Microfluidic Adhesion Induced by Subsurface Microstructures , 2007, Science.

[78]  P. Keller,et al.  Micron-sized liquid crystalline elastomer actuators , 2011 .

[79]  A. Geim,et al.  Microfabricated adhesive mimicking gecko foot-hair , 2003, Nature materials.

[80]  J. Gleeson,et al.  Giant flexoelectricity in bent-core nematic liquid crystal elastomers , 2010 .

[81]  P. Maddalena,et al.  Light-Driven Wettability Tailoring of Azopolymer Surfaces with Reconfigured Three-Dimensional Posts. , 2017, ACS applied materials & interfaces.

[82]  P. Keller,et al.  Direct preparation of nematic liquid crystalline elastomer actuators by electron beam irradiation polymerization , 2012 .

[83]  Milin Zhang,et al.  Tilted Pillars on Wrinkled Elastomers as a Reversibly Tunable Optical Window , 2014, Advanced materials.

[84]  Yen Wei,et al.  Mouldable liquid-crystalline elastomer actuators with exchangeable covalent bonds. , 2014, Nature materials.

[85]  T. Ikeda,et al.  Photomobile polymer materials—various three-dimensional movements , 2009 .

[86]  Yanlei Yu,et al.  Light-switchable behavior of a microarray of azobenzene liquid crystal polymer induced by photodeformation. , 2012, Macromolecular rapid communications.

[87]  Seung-Man Yang,et al.  Flexible, Angle‐Independent, Structural Color Reflectors Inspired by Morpho Butterfly Wings , 2012, Advanced materials.

[88]  E. Purcell Life at Low Reynolds Number , 2008 .

[89]  Mechanical bistability in liquid crystal elastomer-wire composite actuators , 2010 .

[90]  M. Sitti,et al.  Dangling chain elastomers as repeatable fibrillar adhesives. , 2009, ACS applied materials & interfaces.

[91]  J. Madden,et al.  Polymer artificial muscles , 2007 .

[92]  Daniel A. Beller,et al.  Topographically induced hierarchical assembly and geometrical transformation of focal conic domain arrays in smectic liquid crystals , 2012, Proceedings of the National Academy of Sciences.

[93]  Jaap M J den Toonder,et al.  Photo-switchable surface topologies in chiral nematic coatings. , 2012, Angewandte Chemie.

[94]  A. Jagota,et al.  Enhanced adhesion and compliance of film-terminated fibrillar surfaces , 2007, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[95]  S. Nagano,et al.  Photoresponsive Surface Wrinkle Morphologies in Liquid Crystalline Polymer Films , 2015 .

[96]  Benoit Ladoux,et al.  Micro-actuators: when artificial muscles made of nematic liquid crystal elastomers meet soft lithography. , 2006, Journal of the American Chemical Society.

[97]  J. Beisson,et al.  Paramecium BBS genes are key to presence of channels in Cilia , 2012, Cilia.

[98]  M. Remškar,et al.  Liquid crystal elastomer–nanoparticle systems for actuation , 2009 .

[99]  Duncan J. Irschick,et al.  Looking Beyond Fibrillar Features to Scale Gecko‐Like Adhesion , 2012, Advanced materials.

[100]  Tomiki Ikeda,et al.  Anisotropic Bending and Unbending Behavior of Azobenzene Liquid‐Crystalline Gels by Light Exposure , 2003 .

[101]  Joanna Aizenberg,et al.  Direct writing and actuation of three-dimensionally patterned hydrogel pads on micropillar supports. , 2011, Angewandte Chemie.

[102]  Boxin Zhao,et al.  Thermally Active Liquid Crystal Network Gripper Mimicking the Self‐Peeling of Gecko Toe Pads , 2017, Advanced materials.

[103]  Hongrui Jiang,et al.  Direct Sun‐Driven Artificial Heliotropism for Solar Energy Harvesting Based on a Photo‐Thermomechanical Liquid‐Crystal Elastomer Nanocomposite , 2012 .

[104]  Lei Jiang,et al.  Curvature‐Driven Reversible In Situ Switching Between Pinned and Roll‐Down Superhydrophobic States for Water Droplet Transportation , 2011, Advanced materials.

[105]  Yanlei Yu,et al.  Humidity‐ and Photo‐Induced Mechanical Actuation of Cross‐Linked Liquid Crystal Polymers , 2017, Advanced materials.

[106]  T. Ikeda,et al.  Photomobile polymer materials: towards light-driven plastic motors. , 2008, Angewandte Chemie.

[107]  H. Finkelmann,et al.  Shear Deformation and Ferroelectricity in Chiral SmC* Main-chain Elastomers , 2010 .

[108]  Michael J. Escuti,et al.  Printing of monolithic polymeric microstructures using reactive mesogens , 2008 .

[109]  P. Keller,et al.  Micron-sized main-chain liquid crystalline elastomer actuators with ultralarge amplitude contractions. , 2009, Journal of the American Chemical Society.

[110]  Jun Li,et al.  Bio-inspired thermal-responsive inverse opal films with dual structural colors based on liquid crystal elastomer , 2015 .

[111]  Yanlei Yu,et al.  Photomechanics of liquid-crystalline elastomers and other polymers. , 2007, Angewandte Chemie.

[112]  Ludwik Leibler,et al.  Silica-Like Malleable Materials from Permanent Organic Networks , 2011, Science.

[113]  Boxin Zhao,et al.  Biologically inspired enhancement of pressure-sensitive adhesives using a thin film-terminated fibrillar interface , 2012 .

[114]  Boxin Zhao,et al.  Conformal adhesion enhancement on biomimetic microstructured surfaces. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[115]  Nannan Chen,et al.  Hydrogel‐Encapsulated Microfabricated Haircells Mimicking Fish Cupula Neuromast , 2007 .

[116]  Danqing Liu,et al.  Light controlled friction at a liquid crystal polymer coating with switchable patterning. , 2014, Soft matter.

[117]  P. Keller,et al.  Microstructured Nematic Liquid Crystalline Elastomer Surfaces with Switchable Wetting Properties , 2013 .

[118]  Metin Sitti,et al.  Soft Grippers Using Micro‐fibrillar Adhesives for Transfer Printing , 2014, Advanced materials.

[119]  H. Finkelmann,et al.  Main-Chain Liquid Crystalline Elastomers : Monomer and Cross-Linker Molecular Control of the Thermotropic and Elastic Properties , 2008 .

[120]  E. W. Meijer,et al.  Making waves in a photoactive polymer film , 2017, Nature.

[121]  Joanna Aizenberg,et al.  Control of shape and size of nanopillar assembly by adhesion-mediated elastocapillary interaction. , 2010, ACS nano.

[122]  Yu Tian,et al.  Adhesion and friction in gecko toe attachment and detachment , 2006, Proceedings of the National Academy of Sciences.

[123]  H. Finkelmann,et al.  A new opto-mechanical effect in solids. , 2001, Physical review letters.

[124]  K. Harris,et al.  Photopatterned liquid crystalline polymers for microactuators , 2006 .

[125]  D. Broer,et al.  Printed artificial cilia from liquid-crystal network actuators modularly driven by light. , 2009, Nature materials.

[126]  Hao Zeng,et al.  High‐Resolution 3D Direct Laser Writing for Liquid‐Crystalline Elastomer Microstructures , 2014, Advanced materials.

[127]  W. Barthlott,et al.  Purity of the sacred lotus, or escape from contamination in biological surfaces , 1997, Planta.

[128]  Ioannis K. Kaliakatsos,et al.  Microrobots for minimally invasive medicine. , 2010, Annual review of biomedical engineering.

[129]  Shravanthi T. Reddy,et al.  Bioinspired Surfaces with Switchable Adhesion , 2007 .

[130]  T. White,et al.  Programmable and adaptive mechanics with liquid crystal polymer networks and elastomers. , 2015, Nature materials.

[131]  A. Jákli Electro-mechanical effects in liquid crystals , 2010 .

[132]  P. Keller,et al.  Reversible and Rapid Laser Actuation of Liquid Crystalline Elastomer Micropillars with Inclusion of Gold Nanoparticles , 2015 .

[133]  M. Remškar,et al.  Investigations on an integrated conducting nanoparticle–liquid crystal elastomer layer , 2007 .

[134]  Philippe Leclère,et al.  Light‐Responsive Hierarchically Structured Liquid Crystal Polymer Networks for Harnessing Cell Adhesion and Migration , 2017, Advanced materials.

[135]  Cees W. M. Bastiaansen,et al.  Bending Dynamics and Directionality Reversal in Liquid Crystal Network Photoactuators , 2008 .

[136]  Arri Priimagi,et al.  Self‐Regulating Iris Based on Light‐Actuated Liquid Crystal Elastomer , 2017, Advanced materials.

[137]  K. Urayama,et al.  Periodic Surface Undulation in Cholesteric Liquid Crystal Elastomers , 2016 .

[138]  P. Keller,et al.  Light Responsive Microstructured Surfaces of Liquid Crystalline Network with Shape Memory and Tunable Wetting Behaviors. , 2016, Macromolecular rapid communications.

[139]  A. Cassie,et al.  Wettability of porous surfaces , 1944 .

[140]  K. Suh,et al.  A nontransferring dry adhesive with hierarchical polymer nanohairs , 2009, Proceedings of the National Academy of Sciences.