Challenges in computational materials science: Multiple scales, multi-physics and evolving discontinuities

Novel experimental possibilities together with improvements in computer hardware as well as new concepts in computational mathematics and mechanics – in particular multiscale methods – are now, in principle, making it possible to derive and compute phenomena and material parameters at a macroscopic level from processes that take place one to several scales below. Because of this quest to analyse and quantify material behaviour at ever lower scales, more often (evolving) discontinuities have to be taken into account explicitly. Also, many applications require that one or more diffusion-like phenomena are considered in addition to a standard stress analysis. Accordingly, multiscale analysis, multi-physics and the ability to explicitly and accurately model evolving discontinuities are important challenges in computational science, and further progress on these topics is indispensible for an improved understanding of the behaviour and properties of materials. In this contribution we will give an impression of some developments.

[1]  I. Babuska,et al.  The Partition of Unity Method , 1997 .

[2]  P. Onck,et al.  Some effects of random microstructural variations on creep rupture , 1997 .

[3]  J. Mier Fracture Processes of Concrete , 1997 .

[4]  K. Bhattacharya Microstructure of martensite : why it forms and how it gives rise to the shape-memory effect , 2003 .

[5]  B. Schrefler,et al.  The Finite Element Method in the Static and Dynamic Deformation and Consolidation of Porous Media , 1998 .

[6]  L. J. Sluys,et al.  From continuous to discontinuous failure in a gradient-enhanced continuum damage model , 2003 .

[7]  T. Belytschko,et al.  Non‐planar 3D crack growth by the extended finite element and level sets—Part II: Level set update , 2002 .

[8]  Mgd Marc Geers,et al.  Computing strain fields from discrete displacement fields in 2D-solids , 1996 .

[9]  Victor M. Calo,et al.  Residual-based multiscale turbulence modeling: Finite volume simulations of bypass transition , 2005 .

[10]  Ted Belytschko,et al.  A finite element method for crack growth without remeshing , 1999 .

[11]  van der Erik Giessen,et al.  Discrete dislocation plasticity: a simple planar model , 1995 .

[12]  R. de Borst,et al.  Simulating the propagation of displacement discontinuities in a regularized strain‐softening medium , 2002 .

[13]  J. Rots Smeared and discrete representations of localized fracture , 1991 .

[14]  Xiaopeng Xu,et al.  Numerical simulations of fast crack growth in brittle solids , 1994 .

[15]  C. Miehe,et al.  Computational micro-to-macro transitions for discretized micro-structures of heterogeneous materials at finite strains based on the minimization of averaged incremental energy , 2003 .

[16]  Julien Réthoré,et al.  A two‐scale approach for fluid flow in fractured porous media , 2006 .

[17]  R. Borst,et al.  Wave propagation and localisation in a softening two-phase medium , 2006 .

[18]  Ted Belytschko,et al.  Arbitrary discontinuities in finite elements , 2001 .

[19]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[20]  T. Belytschko,et al.  Non‐planar 3D crack growth by the extended finite element and level sets—Part I: Mechanical model , 2002 .

[21]  R. de Borst,et al.  A consistent geometrically non‐linear approach for delamination , 2002 .

[22]  Surendra P. Shah,et al.  Fracture mechanics of concrete , 1995 .

[23]  Claudio Ruggieri,et al.  Numerical modeling of ductile crack growth in 3-D using computational cell elements , 1996 .

[24]  Mark A Fleming,et al.  ENRICHED ELEMENT-FREE GALERKIN METHODS FOR CRACK TIP FIELDS , 1997 .

[25]  Shaoxing Qu,et al.  A finite-temperature dynamic coupled atomistic/discrete dislocation method , 2005 .

[26]  René de Borst,et al.  Mesh-independent discrete numerical representations of cohesive-zone models , 2006 .

[27]  Wing Kam Liu,et al.  Reproducing kernel particle methods , 1995 .

[28]  V. Kouznetsova,et al.  Multi-scale second-order computational homogenization of multi-phase materials : a nested finite element solution strategy , 2004 .

[29]  A. Peirce Computer Methods in Applied Mechanics and Engineering , 2010 .

[30]  T. Hughes,et al.  The variational multiscale method—a paradigm for computational mechanics , 1998 .

[31]  Thomas Pardoen,et al.  An extended model for void growth and coalescence - application to anisotropic ductile fracture , 2000 .

[32]  N. Chandra,et al.  Some issues in the application of cohesive zone models for metal–ceramic interfaces , 2002 .

[33]  T. Belytschko,et al.  Element‐free Galerkin methods , 1994 .

[34]  J. Oden,et al.  H‐p clouds—an h‐p meshless method , 1996 .

[35]  Bkr Prasad,et al.  Fracture Mechanics of Concrete , 2002 .

[36]  A. Needleman,et al.  A cohesive segments method for the simulation of crack growth , 2003 .

[37]  Huajian Gao,et al.  Atomistic and continuum studies of stress and strain fields near a rapidly propagating crack in a harmonic lattice , 2004 .

[38]  de R René Borst,et al.  On the numerical integration of interface elements , 1993 .

[39]  Paul Steinmann,et al.  A hybrid discontinuous Galerkin/interface method for the computational modelling of failure , 2004 .

[40]  M. Ortiz,et al.  Computational modelling of impact damage in brittle materials , 1996 .

[41]  Jacob Fish,et al.  Discrete-to-continuum bridging based on multigrid principles , 2004 .

[42]  T. Belytschko,et al.  Arbitrary branched and intersecting cracks with the eXtended Finite Element Method , 2000 .

[43]  Jean-François Remacle,et al.  A computational approach to handle complex microstructure geometries , 2003 .

[44]  T. Belytschko,et al.  A bridging domain method for coupling continua with molecular dynamics , 2004 .

[45]  J. Hutchinson,et al.  The influence of plasticity on mixed mode interface toughness , 1993 .

[46]  Ted Belytschko,et al.  Elastic crack growth in finite elements with minimal remeshing , 1999 .

[47]  T. Belytschko,et al.  Continuum–discontinuum modelling of shear bands , 2005 .

[48]  Thomas J. R. Hughes,et al.  Encyclopedia of computational mechanics , 2004 .

[49]  C. Comi,et al.  On numerical analyses in the presence of unstable saturated porous materials , 2003 .

[50]  L. J. Sluys,et al.  A new method for modelling cohesive cracks using finite elements , 2001 .

[51]  Thomas Y. Hou,et al.  A Level-Set Approach to the Computation of Twinning and Phase-Transition Dynamics , 1999 .

[52]  Bert Sluys,et al.  Numerical simulation of quasi-brittle fracture using damaging cohesive surfaces , 2000 .

[53]  H. Reinhardt,et al.  Post-peak cyclic behaviour of concrete in uniaxial tensile and alternating tensile and compressive loading , 1984 .

[54]  Julien Réthoré,et al.  A two-scale model for fluid flow in an unsaturated porous medium with cohesive cracks , 2008 .

[55]  Viggo Tvergaard,et al.  Void growth and coalescence in metals deformed at elevated temperature , 2000 .

[56]  K. Garikipati,et al.  A discontinuous Galerkin formulation for a strain gradient-dependent damage model , 2004 .

[57]  Michael Ortiz,et al.  Mixed Atomistic and Continuum Models of Deformation in Solids , 1996 .

[58]  Angelo Simone,et al.  Partition of unity-based discontinuous elements for interface phenomena: computational issues , 2004 .

[59]  Stéphane Roux,et al.  Stress intensity factor measurements from digital image correlation: post-processing and integrated approaches , 2006 .

[60]  Antonio Gens,et al.  Modern issues in non-saturated soils , 1995 .

[61]  S. Osher,et al.  Geometric Level Set Methods in Imaging, Vision, and Graphics , 2011, Springer New York.

[62]  Stefano Mariani,et al.  Extended finite element method for quasi‐brittle fracture , 2003 .

[63]  A. Needleman,et al.  Plasticity size effects in tension and compression of single crystals , 2005 .

[64]  B. Nayroles,et al.  Generalizing the finite element method: Diffuse approximation and diffuse elements , 1992 .

[65]  Anthony G. Evans,et al.  MECHANICS OF MATERIALS: TOP-DOWN APPROACHES TO FRACTURE , 2000 .

[66]  René de Borst,et al.  Modern Domain-based Discretization Methods for Damage and Fracture , 2006 .

[67]  T. Hughes Multiscale phenomena: Green's functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods , 1995 .

[68]  T. Belytschko,et al.  Extended finite element method for cohesive crack growth , 2002 .

[69]  René de Borst,et al.  Some recent issues in computational failure mechanics , 2001 .

[70]  F. H. Wittmann,et al.  Fracture toughness and fracture energy of concrete , 1986 .

[71]  Charbel Farhat,et al.  The discontinuous enrichment method for multiscale analysis , 2003 .