Optical trapping and manipulation of single particles in air: Principles, technical details, and applications

Abstract Trapping a single aerosol particle allows detailed investigation of its fundamental properties over extended time periods without external interferences. Optical trapping has developed into a powerful tool to perform such single-particle studies. However, trapping and manipulating a single particle in air, especially an irregularly shaped, absorbing particle, is much more challenging than that of a particle in a liquid solution. Even though the underlying mechanisms are not fully understood, recent experimental developments advanced the technique for trapping single particles in air, making it possible to manipulate and characterize a wide range of single particles. In this paper, we review recently demonstrated optical configurations for trapping and manipulating single airborne particles. Based on different trapping principles, we tentatively categorize them into radiation-pressure traps, photophoretic traps, and universal optical traps (UOTs). Radiation-pressure traps are based on the radiation pressure force resulting from photon momentum transfer; they include the early optical levitation configurations and the well-known optical tweezers. Photophoretic traps are based on the complex photophoretic forces that occur in absorbing particles; they are classified by the optical arrangements and include single-beam, dual-beam, and confocal-beam traps. UOTs can trap a variety of different types of particles, including transparent or absorbing, spherical or irregularly shaped, and liquid or solid particles. In order to evaluate each optical trapping scheme, four key aspects, i.e., simplicity, robustness, flexibility, and efficiency, of an optical trapping configuration are discussed. In addition to the stable optical trapping, optical manipulations from one dimension to three dimensions allow studying various single particles with great flexibility. With the single particle stably trapped and flexibly manipulated in air, other analytical techniques can be used to characterize these particles. Recent updates on optical methods for characterizing and monitoring single particles in air are discussed, such as light scattering, Raman spectroscopy, and cavity ringdown spectroscopy (CRDS).

[1]  Thomas Wriedt,et al.  The Mie theory : basics and applications , 2012 .

[2]  Ruth Signorell,et al.  Stability of aerosol droplets in Bessel beam optical traps under constant and pulsed external forces. , 2015, The Journal of chemical physics.

[3]  Andrew J Orr-Ewing,et al.  Measurements of the evaporation and hygroscopic response of single fine-mode aerosol particles using a Bessel beam optical trap. , 2014, Physical chemistry chemical physics : PCCP.

[4]  J. Popp,et al.  Observation of morphology‐dependent input and output resonances in time‐dependent Raman spectra of optically levitated microdroplets , 1993 .

[5]  Yong-Le Pan,et al.  Laser pushing or pulling of absorbing airborne particles , 2016 .

[6]  Wieslaw Krolikowski,et al.  Optical guiding of absorbing nanoclusters in air. , 2009, Optics express.

[7]  David McGloin,et al.  Radius measurements of optically trapped aerosols through Brownian motion , 2009 .

[8]  R. Zellner,et al.  Optical levitation of single microdroplets at temperatures down to 180 K. , 2003, Chemphyschem : a European journal of chemical physics and physical chemistry.

[9]  K. Neuman,et al.  Optical trapping. , 2004, The Review of scientific instruments.

[10]  Hans-Peter Loock,et al.  Cavity-enhanced spectroscopy and sensing , 2014 .

[11]  P. Waterman,et al.  SYMMETRY, UNITARITY, AND GEOMETRY IN ELECTROMAGNETIC SCATTERING. , 1971 .

[12]  Ruth Signorell,et al.  Ultraviolet broadband light scattering for optically-trapped submicron-sized aerosol particles. , 2016, Physical chemistry chemical physics : PCCP.

[13]  K. Dholakia,et al.  Orbital angular momentum of a high-order Bessel light beam , 2002 .

[14]  F. J. Fortes,et al.  Atomization efficiency and photon yield in laser-induced breakdown spectroscopy analysis of single nanoparticles in an optical trap , 2017 .

[15]  Yong-qing Li,et al.  Optical trapping and rotation of airborne absorbing particles with a single focused laser beam , 2014 .

[16]  Qingchuan Zhang,et al.  Photophoretic trapping of multiple particles in tapered-ring optical field. , 2014, Optics express.

[17]  Andrew J Orr-Ewing,et al.  Selection and characterization of aerosol particle size using a bessel beam optical trap for single particle analysis. , 2012, Physical chemistry chemical physics : PCCP.

[18]  G. Gouesbet,et al.  Optical Levitation Experiments for generalized lorenz‐mie theory validation , 1990 .

[19]  Yong-qing Li,et al.  Optical pulling of airborne absorbing particles and smut spores over a meter-scale distance with negative photophoretic force , 2015 .

[20]  Jonathan P. Reid,et al.  Measurements of the timescales for the mass transfer of water in glassy aerosol at low relative humidity and ambient temperature , 2011 .

[21]  Atmospherically relevant core-shell aerosol studied using optical trapping and Mie scattering. , 2015, Chemical communications.

[22]  Yong-Le Pan,et al.  Trapping of individual airborne absorbing particles using a counterflow nozzle and photophoretic trap for continuous sampling and analysis , 2014 .

[23]  Kishan Dholakia,et al.  Trapping in a material world , 2016 .

[24]  Jonghoon Ahn,et al.  Torsional Optomechanics of a Levitated Nonspherical Nanoparticle. , 2016, Physical review letters.

[25]  Halina Rubinsztein-Dunlop,et al.  Laser trapping of colloidal metal nanoparticles. , 2015, ACS nano.

[26]  M. Raizen,et al.  Measurement of the Instantaneous Velocity of a Brownian Particle , 2010, Science.

[27]  Jonghoon Ahn,et al.  Electron spin control of optically levitated nanodiamonds in vacuum , 2015, Nature Communications.

[28]  Laura Mitchem,et al.  In situ comparative measurements of the properties of aerosol droplets of different chemical composition. , 2008, Faraday discussions.

[29]  Monika Ritsch-Marte,et al.  Optical mirror trap with a large field of view. , 2009, Optics express.

[30]  Jariya Buajarern,et al.  A strategy for characterizing the mixing state of immiscible aerosol components and the formation of multiphase aerosol particles through coagulation. , 2006, The journal of physical chemistry. B.

[31]  Christoph Dellago,et al.  Dynamic relaxation of a levitated nanoparticle from a non-equilibrium steady state. , 2014, Nature nanotechnology.

[32]  Yinon Rudich,et al.  Optical properties of absorbing and non-absorbing aerosols retrieved by cavity ring down (CRD) spectroscopy , 2006 .

[33]  O. Muñoz,et al.  Elastic back-scattering patterns via particle surface roughness and orientation from single trapped airborne aerosol particles , 2017 .

[34]  Israel Schechter,et al.  Aerosol analysis by cavity-ring-down laser spectroscopy , 2002 .

[35]  J. Reid,et al.  Manipulation and characterization of aqueous sodium dodecyl sulfate/sodium chloride aerosol particles. , 2007, The journal of physical chemistry. A.

[36]  Jonathan P. Reid,et al.  Novel optical techniques for measurements of light extinction, scattering and absorption by single aerosol particles , 2011 .

[37]  H. V. Hulst Light Scattering by Small Particles , 1957 .

[38]  Jan Huisken,et al.  Optical levitation of absorbing particles with a nominally Gaussian laser beam. , 2002, Optics letters.

[39]  B. Schrader,et al.  Investigation of a phase transition in a single optically levitated microdroplet by Raman-Mie scattering. , 1997, Applied optics.

[40]  Giel Berden,et al.  Cavity ring-down spectroscopy : techniques and applications , 2009 .

[41]  Mark G. Raizen,et al.  Millikelvin cooling of an optically trapped microsphere in vacuum , 2011, 1101.1283.

[42]  Norman R. Heckenberg,et al.  T-matrix method for modelling optical tweezers , 2011 .

[43]  A. Ward,et al.  Broadband Mie scattering from optically levitated aerosol droplets using a white LED. , 2008, Optics express.

[44]  Miles J. Padgett,et al.  Tweezers with a twist , 2011 .

[45]  David McGloin,et al.  Single aerosol trapping with an annular beam: improved particle localisation. , 2012, Physical chemistry chemical physics : PCCP.

[46]  David McGloin,et al.  Controlling and characterizing the coagulation of liquid aerosol droplets. , 2006, The Journal of chemical physics.

[47]  C. Alpmann,et al.  Holographic optical bottle beams , 2011, 1112.5270.

[48]  A. Ashkin,et al.  Observation of light scattering from nonspherical particles using optical levitation. , 1980, Applied optics.

[49]  David McGloin,et al.  Optical manipulation of airborne particles: techniques and applications. , 2008, Faraday discussions.

[50]  Stanley W Botchway,et al.  Dynamic viscosity mapping of the oxidation of squalene aerosol particles. , 2016, Physical chemistry chemical physics : PCCP.

[51]  J. Anders,et al.  Nanoscale temperature measurements using non-equilibrium Brownian dynamics of a levitated nanosphere. , 2013, Nature nanotechnology.

[52]  A. Ashkin,et al.  Optical trapping and manipulation of single cells using infrared laser beams , 1987, Nature.

[53]  J. Lock Calculation of the radiation trapping force for laser tweezers by use of generalized Lorenz-Mie theory. I. Localized model description of an on-axis tightly focused laser beam with spherical aberration. , 2004, Applied optics.

[54]  Halina Rubinsztein-Dunlop,et al.  Optical microrheology using rotating laser-trapped particles. , 2004, Physical review letters.

[55]  W. Ketterle,et al.  OPTICAL CONFINEMENT OF A BOSE-EINSTEIN CONDENSATE , 1998 .

[56]  Representation and calculation of photophoretic forces and torques , 1995 .

[57]  C. Mund,et al.  Raman- and Mie-spectroscopic studies of the cooling behaviour of levitated, single sulfuric acid/H2O microdroplets. , 2003, Chemphyschem : a European journal of chemical physics and physical chemistry.

[58]  R. Gauthier,et al.  Computation of the optical trapping force using an FDTD based technique. , 2005, Optics express.

[59]  Johanna L. Miller,et al.  Cavity ring-down spectroscopy measurements of single aerosol particle extinction. I. The effect of position of a particle within the laser beam on extinction. , 2007, The Journal of chemical physics.

[60]  Thomas R Huser,et al.  Raman spectroscopy and microscopy of individual cells and cellular components , 2008 .

[61]  J. Reid,et al.  Assessing the accuracy of complex refractive index retrievals from single aerosol particle cavity ring-down spectroscopy , 2016 .

[62]  J. Blum,et al.  Photophoresis of micrometer-sized particles in the free-molecular regime , 2001 .

[63]  J. Reid Particle levitation and laboratory scattering , 2009 .

[64]  S. Arnold,et al.  Broadband photophoretic spectroscopy. , 1980, Optics letters.

[65]  Jonathan P. Reid,et al.  Optical control and characterisation of aerosol , 2009 .

[66]  W. Krolikowski,et al.  Optical vault: a reconfigurable bottle beam based on conical refraction of light. , 2013, Optics express.

[67]  Z. Kam,et al.  Absorption and Scattering of Light by Small Particles , 1998 .

[68]  G. Videen,et al.  Optical trapping-Raman spectroscopy (OT-RS) with embedded microscopy imaging for concurrent characterization and monitoring of physical and chemical properties of single particles. , 2018, Analytica chimica acta.

[69]  Christoph F Schmidt,et al.  Laser-induced heating in optical traps. , 2003, Biophysical journal.

[70]  W. Osten,et al.  Holographic twin traps , 2009 .

[71]  C. H. Liu,et al.  Theoretical analysis for photophoresis of a microscale hydrophobic particle in liquids. , 2010, Optics express.

[72]  Romain Quidant,et al.  Plasmon nano-optical tweezers , 2011 .

[73]  G. Schweiger Observation of input and output structural resonances in the Raman spectrum of a single spheroidal dielectric microparticle. , 1990, Optics letters.

[74]  Andrew J Orr-Ewing,et al.  Measurements of Light Extinction by Single Aerosol Particles. , 2013, The journal of physical chemistry letters.

[75]  Laura Mitchem,et al.  Laser probing of single-aerosol droplet dynamics. , 2006, Annual review of physical chemistry.

[76]  T. Perkins,et al.  Measuring 0.1-nm motion in 1 ms in an optical microscope with differential back-focal-plane detection. , 2004, Optics letters.

[77]  Yong-Le Pan,et al.  Photophoretic trapping of absorbing particles in air and measurement of their single-particle Raman spectra. , 2012, Optics express.

[78]  Jack Ng,et al.  Theory of optical trapping by an optical vortex beam. , 2009, Physical review letters.

[79]  J. Glückstad,et al.  Gearing up for optical microrobotics: micromanipulation and actuation of synthetic microstructures by optical forces , 2013 .

[80]  J. Reid,et al.  Longitudinal optical trapping and sizing of aerosol droplets. , 2010, Optics express.

[81]  Jennifer E. Curtis,et al.  Dynamic holographic optical tweezers , 2002 .

[82]  A. Ashkin Acceleration and trapping of particles by radiation pressure , 1970 .

[83]  Vladlen G. Shvedov,et al.  A long-range polarization-controlled optical tractor beam , 2014, Nature Photonics.

[84]  A. Ward,et al.  Heterogeneous oxidation of nitrite anion by gas-phase ozone in an aqueous droplet levitated by laser tweezers (optical trap): is there any evidence for enhanced surface reaction? , 2015, Physical chemistry chemical physics : PCCP.

[85]  M. Padgett,et al.  Advances in optical angular momentum , 2008 .

[86]  G. Videen,et al.  The temporal evolution process from fluorescence bleaching to clean Raman spectra of single solid particles optically trapped in air , 2017 .

[87]  J. R. Brock Photophoresis and the Descent of Particles into the Lower Stratosphere G. M. HDY National Centeror Atmospheric Research, Boulder, Colorado , 1967 .

[88]  Mark A. Coleman,et al.  Experimental observation of particle cones formed by optical trapping. , 2014, Optics letters.

[89]  A. Pluchino Radiometric levitation of spherical carbon aerosol particles using a Nd:YAG laser. , 1983, Applied optics.

[90]  J. Reid,et al.  Evaporation of ethanol/water droplets: examining the temporal evolution of droplet size, composition and temperature. , 2005, The journal of physical chemistry. A.

[91]  Halina Rubinsztein-Dunlop,et al.  T-matrix calculation via discrete-dipole approximation, point matching and exploiting symmetry , 2008, 0812.2040.

[92]  M. Kerker,et al.  Photophoretic force on aerosol particles in the free-molecule regime , 1982 .

[93]  Yong-Le Pan,et al.  Optical trap for both transparent and absorbing particles in air using a single shaped laser beam. , 2015, Optics letters.

[94]  A. Frohn,et al.  Determination of Size, Evaporation Rate and Freezing of Water Droplets using light scattering and radiation pressure , 1994 .

[95]  F. Pope,et al.  Measurement of the Raman spectra and hygroscopicity of four pharmaceutical aerosols as they travel from pressurised metered dose inhalers (pMDI) to a model lung. , 2017, International journal of pharmaceutics.

[96]  Andrew J Orr-Ewing,et al.  Deviations from plane-wave Mie scattering and precise retrieval of refractive index for a single spherical particle in an optical cavity. , 2014, The journal of physical chemistry. A.

[97]  Norman R. Heckenberg,et al.  Optical tweezers computational toolbox , 2007 .

[98]  Kishan Dholakia,et al.  Supplementary Figure S1: Numerical Psd Simulation. Example Numerical Simulation of The , 2022 .

[99]  Alfons van Blaaderen,et al.  High trapping forces for high-refractive index particles trapped in dynamic arrays of counterpropagating optical tweezers. , 2008, Applied optics.

[100]  Jonathan P. Reid,et al.  Fluorescence spectroscopy and signalling from optically-tweezed aerosol droplets , 2010 .

[101]  Bin Zhao,et al.  Temperature determination of single micrometre-sized particles from forced/free convection and photophoresis , 1999 .

[102]  A. Ward,et al.  Laser heating of sulfuric acid droplets held in air by laser Raman tweezers , 2013 .

[103]  R Di Leonardo,et al.  Parametric resonance of optically trapped aerosols. , 2007, Physical review letters.

[104]  Jonathan P. Reid,et al.  Comparative measurements of aerosol droplet growth , 2006 .

[105]  Md. Abdul Matin,et al.  Tractor beam for fully immersed multiple objects: Long distance pulling, trapping, and rotation with a single optical set‐up , 2015 .

[106]  W. Kiefer,et al.  Structural resonances observed in the Raman spectra of optically levitated liquid droplets. , 1985, Applied optics.

[107]  J. B. Paul,et al.  Cavity Ringdown Laser Absorption Spectroscopy: History, Development, and Application to Pulsed Molecular Beams. , 1997, Chemical reviews.

[108]  F. Pope,et al.  Rapid interrogation of the physical and chemical characteristics of salbutamol sulphate aerosol from a pressurised metered-dose inhaler (pMDI). , 2014, Chemical communications.

[109]  Regina K. Schmitt,et al.  Optical Trapping of Gold Nanoparticles in Air. , 2015, Nano letters.

[110]  G. Ritchie,et al.  Optical trapping and spectroscopic characterisation of ionic liquid solutions. , 2013, Physical chemistry chemical physics : PCCP.

[111]  Yong-Le Pan,et al.  Detection and characterization of chemical aerosol using laser-trapping single-particle Raman spectroscopy. , 2017, Applied optics.

[112]  Peng Zhang,et al.  Trapping and transporting aerosols with a single optical bottle beam generated by moiré techniques. , 2011, Optics letters.

[113]  J. Bai,et al.  Particle trapping and manipulation using hollow beam with tunable size generated by thermal nonlinear optical effect , 2018 .

[114]  Generation of a dark hollow beam by a small hollow fiber , 1997 .

[115]  Aristide Dogariu,et al.  Optically induced 'negative forces' , 2012, Nature Photonics.

[116]  Peng Zhang,et al.  Observation of trapping and transporting air-borne absorbing particles with a single optical beam , 2012 .

[117]  N. Tabiryan,et al.  Creation of a hollow laser beam using self-phase modulation in a nematic liquid crystal , 2004, Conference on Lasers and Electro-Optics, 2004. (CLEO)..

[118]  Arthur Ashkin,et al.  Feedback stabilization of optically levitated particles , 1977 .

[119]  Wolfgang Kiefer,et al.  Raman-Microsampling Technique Applying Optical Levitation by Radiation Pressure , 1984 .

[120]  D. Leykam,et al.  Laser speckle field as a multiple particle trap , 2010 .

[121]  Andrew J. Orr-Ewing,et al.  Extinction cross section measurements for a single optically trapped particle , 2015, SPIE NanoScience + Engineering.

[122]  K. Svoboda,et al.  Biological applications of optical forces. , 1994, Annual review of biophysics and biomolecular structure.

[123]  Masaru Uraoka,et al.  Raman Spectroscopy of Single Light-Absorbing Carbonaceous Particles Levitated in Air Using an Annular Laser Beam. , 2017, Analytical chemistry.

[124]  N. Kitamura,et al.  In situ Quantification of Ammonium Sulfate in Single Aerosol Droplets by Means of Laser Trapping and Raman Spectroscopy , 2013, Analytical sciences : the international journal of the Japan Society for Analytical Chemistry.

[125]  A. Ashkin,et al.  Optical Levitation of Liquid Drops by Radiation Pressure , 1975, Science.

[126]  H. Rohatschek,et al.  Direction, magnitude and causes of photophoretic forces , 1985 .

[127]  W. Kiefer,et al.  Investigations of Radical Polymerization and Copolymerization Reactions in Optically Levitated Microdroplets by Simultaneous Raman Spectroscopy, Mie Scattering, and Radiation Pressure Measurements , 1998 .

[128]  L. D. Reed Low Knudsen number photophoresis , 1977 .

[129]  R. A. Cox,et al.  Optical trapping and Raman spectroscopy of solid particles. , 2014, Physical chemistry chemical physics : PCCP.

[130]  Giovanni Volpe,et al.  Optical trapping and manipulation of nanostructures. , 2013, Nature nanotechnology.

[131]  He,et al.  Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity. , 1995, Physical review letters.

[132]  Brandon Redding,et al.  Raman Spectroscopy of Optically Trapped Single Biological Micro-Particles , 2015, Sensors.

[133]  William Li,et al.  Stable optical trapping and sensitive characterization of nanostructures using standing-wave Raman tweezers , 2017, Scientific Reports.

[134]  Oto Brzobohatý,et al.  Experimental demonstration of optical transport, sorting and self-arrangement using a /`tractor beam/' , 2013 .

[135]  M D Summers,et al.  Optical guiding of aerosol droplets. , 2006, Optics express.

[136]  Jariya Buajarern,et al.  Characterizing multiphase organic/inorganic/aqueous aerosol droplets. , 2007, The journal of physical chemistry. A.

[137]  D. A. Swyt,et al.  Sizing of individual optically levitated evaporating droplets by measurement of resonances in the polarization ratio. , 1981, Applied optics.

[138]  David McGloin,et al.  Spectroscopic characterisation and manipulation of arrays of sub-picolitre aerosol droplets. , 2009, Lab on a chip.

[139]  Yong-Le Pan,et al.  Optical trap-cavity ringdown spectroscopy as a single-aerosol-particle-scope , 2015 .

[140]  G. Roosen,et al.  Optical levitation by means of two horizontal laser beams: A theoretical and experimental study , 1976 .

[141]  Lukas Novotny,et al.  Observation of nitrogen vacancy photoluminescence from an optically levitated nanodiamond. , 2013, Optics letters.

[142]  C. Qiu,et al.  Single gradientless light beam drags particles as tractor beams. , 2011, Physical review letters.

[143]  B. Schrader,et al.  Simple device for the generation and optical levitation of single aerosol particles , 1993 .

[144]  T. Lettieri,et al.  Observation of sharp resonances in the spontaneous Raman spectrum of a single optically levitated microdroplet , 1985 .

[145]  F. Pope,et al.  Fluorescence lifetime imaging of optically levitated aerosol: a technique to quantitatively map the viscosity of suspended aerosol particles. , 2016, Physical chemistry chemical physics : PCCP.

[146]  A. Ashkin,et al.  History of optical trapping and manipulation of small-neutral particle, atoms, and molecules , 2000, IEEE Journal of Selected Topics in Quantum Electronics.

[147]  David McGloin,et al.  Optical tweezers: 20 years on , 2006, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[148]  G. Schweiger,et al.  Optical trap sedimentation cell—a new technique for the sizing of microparticles , 1996 .

[149]  Mark Bashkansky,et al.  Generation of hollow beams by using a binary spatial light modulator. , 2006, Optics letters.

[150]  G. Gouesbet,et al.  Optical levitation of a single particle to study the theory of the quasi-elastic scattering of light. , 1980, Applied optics.

[151]  R. Zellner,et al.  Freezing nucleation of levitated single sulfuric acid/H2O micro-droplets. A combined Raman- and Mie spectroscopic study , 2003 .

[152]  Helmuth Horvath,et al.  Photophoresis – a Forgotten Force ?? , 2014 .

[153]  Stephanie H. Jones,et al.  Determining the unique refractive index properties of solid polystyrene aerosol using broadband Mie scattering from optically trapped beads. , 2013, Physical chemistry chemical physics : PCCP.

[154]  J. Reid,et al.  The transition from liquid to solid-like behaviour in ultrahigh viscosity aerosol particles , 2013 .

[155]  Chu,et al.  Three-dimensional viscous confinement and cooling of atoms by resonance radiation pressure. , 1985, Physical review letters.

[156]  G. Schweiger Observation of morphology‐dependent resonances caused by the input field in the Raman spectrum of microdroplets , 1990 .

[157]  Wieslaw Krolikowski,et al.  Photophoretic manipulation of absorbing aerosol particles with vortex beams: theory versus experiment. , 2009, Optics express.

[158]  A. Porfirev,et al.  Effect of laser radiation power on laser trapping of light-absorbing microparticles in air , 2017 .

[159]  Chuji Wang,et al.  Optical configurations for photophoretic trap of single particles in air. , 2016, The Review of scientific instruments.

[160]  Conical Refraction Bottle Beams for Entrapment of Absorbing Droplets , 2018, Scientific Reports.

[161]  J. Reboud,et al.  Aerosol droplet optical trap loading using surface acoustic wave nebulization. , 2013, Optics express.

[162]  Alexander Rohrbach,et al.  Switching and measuring a force of 25 femtoNewtons with an optical trap. , 2005, Optics express.

[163]  Jonathan P. Reid,et al.  Control and characterisation of a single aerosol droplet in a single-beam gradient-force optical trap , 2004 .

[164]  Noboru Kitamura,et al.  In situ observations of freezing processes of single micrometer-sized aqueous ammonium sulfate droplets in air , 2011 .

[165]  Lukas Novotny,et al.  Subkelvin parametric feedback cooling of a laser-trapped nanoparticle. , 2012, Physical review letters.

[166]  Arthur Ashkin,et al.  Stability of optical levitation by radiation pressure , 1974 .

[167]  M. Mishchenko,et al.  Reprint of: T-matrix computations of light scattering by nonspherical particles: a review , 1996 .

[168]  Wieslaw Krolikowski,et al.  Selective Trapping of Multiple Particles by Volume Speckle Field , 2022 .

[169]  D. Jaque,et al.  Optical trapping for biosensing: materials and applications. , 2017, Journal of materials chemistry. B.

[170]  Juan José Sáenz,et al.  Optical forces: Laser tractor beams , 2011 .

[171]  Investigation of gel formation and volatilization of acetate acid in magnesium acetate droplets by the optical tweezers. , 2018, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[172]  Yosuke Minowa,et al.  In situ tuning of whispering gallery modes of levitated silica microspheres , 2017 .

[173]  P W Smith,et al.  Four-wave mixing in an artificial Kerr medium. , 1981, Optics letters.

[174]  B. Haymore,et al.  A photophoretic-trap volumetric display , 2018, Nature.

[175]  Jonathan E. Thompson,et al.  Simultaneous measurement of optical scattering and extinction on dispersed aerosol samples. , 2010, Analytical chemistry.

[176]  Olga Jovanovic,et al.  Photophoresis—Light induced motion of particles suspended in gas , 2009 .

[177]  J. Brock,et al.  Time-resolved Raman spectroscopy from reacting optically levitated microdroplets. , 1990, Applied optics.

[178]  G. Pierattini,et al.  Axially symmetric hollow beams using refractive conical lenses , 2003 .

[179]  H. Rubinsztein-Dunlop,et al.  Optical alignment and spinning of laser-trapped microscopic particles , 1998, Nature.

[180]  G. Videen,et al.  Measurement of back-scattering patterns from single laser trapped aerosol particles in air. , 2017, Applied optics.

[181]  A. Pluchino Photophoretic force on particles for low Knudsen number. , 1983, Applied optics.

[182]  Y. Kivshar,et al.  Optical vortex beams for trapping and transport of particles in air , 2010 .

[183]  Yong-qing Li,et al.  Measurement of Raman spectra of single airborne absorbing particles trapped by a single laser beam. , 2013, Optics letters.

[184]  Stephen Arnold,et al.  Radiometric levitation of micron sized spheres , 1982 .

[185]  J. Gutiérrez-Vega,et al.  Fiber based optical trapping of aerosols. , 2008, Optics express.

[186]  Kishan Dholakia,et al.  Optical levitation in a Bessel light beam , 2004 .

[187]  G. Gouesbet,et al.  Optical levitation experiments to assess the validity of the generalized Lorenz-Mie theory. , 1992, Applied optics.

[188]  H. Rohatschek,et al.  Semi-empirical model of photophoretic forces for the entire range of pressures , 1995 .

[189]  Yong-Le Pan,et al.  Photophoretic trapping of airborne particles using ultraviolet illumination. , 2015, Optics express.

[190]  Alan L. Huston,et al.  High-precision identification of morphology-dependent resonances in optical processes in microdroplets , 1993 .

[191]  Miceli,et al.  Diffraction-free beams. , 1987, Physical review letters.

[192]  Xiaotang Hu,et al.  Piezoelectric microelectromechanical resonant sensors for chemical and biological detection. , 2012, Lab on a chip.

[193]  S. Arnold,et al.  Comprehensive model of the photophoretic force on a spherical microparticle. , 1985, Optics letters.

[194]  Stephen Arnold,et al.  Size dependence of the photophoretic force , 1982 .

[195]  Latifi,et al.  Double-resonance stimulated Raman scattering from optically levitated glycerol droplets. , 1989, Physical review. A, General physics.

[196]  Larry D. Travis,et al.  Capabilities and limitations of a current FORTRAN implementation of the T-matrix method for randomly oriented, rotationally symmetric scatterers , 1998 .

[197]  N. Tong Photophoretic force in the free molecule and transition regimes , 1973 .

[198]  Brian Stout,et al.  Longitudinal optical binding of high optical contrast microdroplets in air. , 2006, Physical review letters.

[199]  D V Petrov,et al.  Raman spectroscopy of optically trapped particles , 2007 .

[200]  K. Dholakia,et al.  Optical trapping for analytical biotechnology. , 2012, Current opinion in biotechnology.

[201]  S. A. Beresnev,et al.  Photophoresis of a spherical particle in a rarefied gas , 1993 .

[202]  E. R. Shchukin,et al.  Motion of small aerosol particle in a light field , 1976 .

[203]  D. Burnham,et al.  Holographic optical trapping of aerosol droplets. , 2006, Optics express.

[204]  A. Frohn,et al.  New technique for investigating phase transition processes of optically levitated droplets consisting of water , 1996 .

[205]  Philippe Guyot-Sionnest,et al.  Optical trapping and alignment of single gold nanorods by using plasmon resonances. , 2006 .

[206]  Miles J. Padgett,et al.  Lights, action: Optical tweezers , 2002 .

[207]  E. R. Shchukin,et al.  Theory of the photophoretic motion of the large-size volatile aerosol particle , 1976 .

[208]  A. Ashkin,et al.  Observation of optical resonances of dielectric spheres by light scattering. , 1981, Applied optics.

[209]  J. Lock Calculation of the radiation trapping force for laser tweezers by use of generalized Lorenz-Mie theory. II. On-axis trapping force. , 2004, Applied optics.

[210]  Yusuke Ogura,et al.  Optical levitation and translation of a microscopic particle by use of multiple beams generated by vertical-cavity surface-emitting laser array sources. , 2002, Applied optics.

[211]  T. Allen,et al.  Precision of light scattering techniques for measuring optical parameters of microspheres. , 1991, Applied optics.

[212]  Tomáš Čižmár,et al.  Shaping the future of manipulation , 2011 .

[213]  A. R. Ravishankara,et al.  Measurement of aerosol optical extinction at 532 nm with pulsed cavity ring down spectroscopy , 2004 .

[214]  H. Keh,et al.  Effects of thermal stress slip on thermophoresis and photophoresis , 2012 .

[215]  Arthur Ashkin,et al.  Observation of Resonances in the Radiation Pressure on Dielectric Spheres , 1977 .

[216]  Christoph Haisch,et al.  Photoacoustics of single laser-trapped nanodroplets for the direct observation of nanofocusing in aerosol photokinetics , 2016, Nature Communications.

[217]  Yosuke Minowa,et al.  Optical levitation of a microdroplet containing a single quantum dot. , 2014, Optics letters.

[218]  M. Padgett,et al.  Optical trapping and binding , 2013, Reports on progress in physics. Physical Society.

[219]  Shiyang Liu,et al.  Comment on "Longitudinal optical binding of high optical contrast microdroplets in air". , 2008, Physical review letters.

[220]  Kishan Dholakia,et al.  Optical manipulation of nanoparticles: a review , 2008 .

[221]  H. Keh,et al.  Low-Knudsen-number photophoresis of aerosol spheroids. , 2005, Journal of colloid and interface science.

[222]  J. Käs,et al.  The optical stretcher: a novel laser tool to micromanipulate cells. , 2001, Biophysical journal.

[223]  Vladlen G. Shvedov,et al.  Effect of polarization on transport of particles in air by optical vortex beam , 2012 .

[224]  Kishan Dholakia,et al.  Optical micromanipulation takes hold , 2006 .

[225]  Johannes Courtial,et al.  Light’s Orbital Angular Momentum , 2004 .

[226]  Y. Kawata,et al.  Measurement of viscosity of liquids using optical tweezers , 2017 .

[227]  C. Esen,et al.  Observation of Fluorescence Background Suppression in Raman Scattering on Single Microparticles , 1996 .

[228]  J. Pendleton,et al.  Aerosol-induced laser breakdown thresholds: effect of resonant particles. , 1992, Applied optics.

[229]  J. Popp,et al.  Microchemistry: time dependence of an acid-base reaction in a single optically levitated microdroplet , 1997 .

[230]  Isaac C. D. Lenton,et al.  Theory and practice of simulation of optical tweezers , 2017, Journal of Quantitative Spectroscopy and Radiative Transfer.

[231]  Kenichi Yoshikawa,et al.  Optical trapping of a growing water droplet in air , 2003 .

[232]  R. A. Cox,et al.  Studies of single aerosol particles containing malonic acid, glutaric acid, and their mixtures with sodium chloride. II. Liquid-state vapor pressures of the acids. , 2010, The journal of physical chemistry. A.

[233]  S. Chu,et al.  Observation of a single-beam gradient force optical trap for dielectric particles. , 1986, Optics letters.

[234]  A Dogariu,et al.  Negative nonconservative forces: optical "tractor beams" for arbitrary objects. , 2011, Physical review letters.

[235]  Kishan Dholakia,et al.  Light beats the spread: “non‐diffracting” beams , 2010 .

[236]  G. Schweiger,et al.  Enhancement of the Raman spectrum of optically levitated microspheres by seeded nanoparticles , 1995 .

[237]  V. Ramaswamy,et al.  Simultaneous determination of refractive index and size of spherical dielectric particles from light scattering data. , 1983, Applied optics.

[238]  Wieslaw Krolikowski,et al.  Giant optical manipulation. , 2010, Physical review letters.

[239]  Claudia Marcolli,et al.  Exploring the complexity of aerosol particle properties and processes using single particle techniques. , 2012, Chemical Society reviews.

[240]  Anthony W. Strawa,et al.  The Measurement of Aerosol Optical Properties Using Continuous Wave Cavity Ring-Down Techniques , 2003 .

[241]  David G Grier,et al.  Optical conveyors: a class of active tractor beams. , 2012, Physical review letters.

[242]  W. Krolikowski,et al.  Polarization-sensitive photophoresis , 2012 .

[243]  Jonathan E. Thompson,et al.  A fixed frequency aerosol albedometer. , 2008, Optics express.

[244]  Hongze Lin,et al.  Measurements of the Imaginary Component of the Refractive Index of Weakly Absorbing Single Aerosol Particles. , 2017, The journal of physical chemistry. A.

[245]  C. Loesche,et al.  Photophoresis on particles hotter/colder than the ambient gas for the entire range of pressures , 2016, 1609.01341.

[246]  M Mazilu,et al.  Dual beam fibre trap for Raman micro-spectroscopy of single cells. , 2006, Optics express.

[247]  J. Reid,et al.  Direct measurements of the optical cross sections and refractive indices of individual volatile and hygroscopic aerosol particles. , 2015, The journal of physical chemistry. A.

[248]  Zhang-qi Yin,et al.  Large quantum superpositions of a levitated nanodiamond through spin-optomechanical coupling , 2013, 1305.1701.

[249]  A. O’Keefe,et al.  Cavity ring‐down optical spectrometer for absorption measurements using pulsed laser sources , 1988 .

[250]  Wieslaw Krolikowski,et al.  Optical manipulation of particle ensembles in air. , 2012, Optics letters.

[251]  A. Porfirev,et al.  Optical trapping and manipulation of light-absorbing particles by means of a Hermite–Gaussian laser beam , 2015 .

[252]  M. Linne,et al.  Fixed-frequency cavity ringdown diagnostic for atmospheric particulate matter. , 1998, Optics letters.

[253]  Yasuhiro Takaya,et al.  Measurement of axial and transverse trapping stiffness of optical tweezers in air using a radially polarized beam. , 2009, Applied optics.

[254]  Jonathan P. Reid,et al.  Probing the micro-rheological properties of aerosol particles using optical tweezers , 2014, Reports on progress in physics. Physical Society.

[255]  Halina Rubinsztein-Dunlop,et al.  Optical tweezers: Theory and modelling , 2014 .

[256]  Yu. B. Ovchinnikov,et al.  Generation of a hollow laser beam for atom trapping using an axicon , 1998 .

[257]  Jonathan P. Reid,et al.  Spectroscopic studies of the size and composition of single aerosol droplets , 2007 .

[258]  J. Reid,et al.  Manipulation and characterisation of accumulation and coarse mode aerosol particles using a Bessel beam trap. , 2009, Physical chemistry chemical physics : PCCP.

[259]  Jonathan P. Reid,et al.  Optical manipulation and characterisation of aerosol particles using a single-beam gradient force optical trap. , 2008, Chemical Society reviews.

[260]  J. Popp,et al.  Investigations of the composition changes of an evaporating, single binary-mixture microdroplet by inelastic and elastic light scattering , 1998 .

[261]  J. P. Oliver,et al.  Light scattering by laser levitated particles. , 1990, Applied optics.

[262]  R. Skidanov,et al.  Dark-hollow optical beams with a controllable shape for optical trapping in air. , 2015, Optics express.

[263]  R. Zellner,et al.  Investigations of the hygroscopic properties of ammonium sulfate and mixed ammonium sulfate and glutaric acid micro droplets by means of optical levitation and Raman spectroscopy. , 2006, Physical chemistry chemical physics : PCCP.

[264]  J. P. Woerdman,et al.  Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[265]  Laura Mitchem,et al.  Comparative thermodynamic studies of aqueous glutaric acid, ammonium sulfate and sodium chloride aerosol at high humidity. , 2008, The journal of physical chemistry. A.

[266]  S. M. Taheri,et al.  Tube length-assisted optimized aerosol trapping , 2014 .

[267]  M D Summers,et al.  Trapping solid aerosols with optical tweezers: a comparison between gas and liquid phase optical traps. , 2008, Optics express.

[268]  W. Krolikowski,et al.  Robust trapping and manipulation of airborne particles with a bottle beam , 2011, 2011 International Quantum Electronics Conference (IQEC) and Conference on Lasers and Electro-Optics (CLEO) Pacific Rim incorporating the Australasian Conference on Optics, Lasers and Spectroscopy and the Australian Conference on Optical Fibre Technology.

[269]  Fetah Benabid,et al.  Particle levitation and guidance in hollow-core photonic crystal fiber. , 2002, Optics express.

[270]  Yuya Suzuki,et al.  Laser trapping and picosecond time-resolved spectroscopy of water droplets in air: cavity-enhanced spontaneous emission of Ru(bpy)(3)Cl(2). , 2010, Physical chemistry chemical physics : PCCP.

[271]  Yong-qing Li,et al.  Near-infrared Raman spectroscopy of single optically trapped biological cells. , 2002, Optics letters.

[272]  Halina Rubinsztein-Dunlop,et al.  Picoliter rheology of gaseous media using a rotating optically trapped birefringent microparticle. , 2011, Analytical chemistry.

[273]  B. Schrader,et al.  Uncertainties in temperature measurements of optically levitated single aerosol particles by Raman spectroscopy , 1999 .

[274]  Thomas C Preston,et al.  Optical extinction efficiency measurements on fine and accumulation mode aerosol using single particle cavity ring-down spectroscopy. , 2015, Physical chemistry chemical physics : PCCP.

[275]  Gérard Gréhan,et al.  Generalized Lorenz-Mie Theories , 2011 .

[276]  James R. Brock,et al.  On the theory of thermal forces acting on aerosol particles , 1962 .

[277]  Jonathan P Reid,et al.  Using optical landscapes to control, direct and isolate aerosol particles. , 2009, Physical chemistry chemical physics : PCCP.

[278]  J. Popp,et al.  Raman-Mie scattering from single laser trapped microdroplets , 1997 .

[279]  A. Suzuki,et al.  Observation of a single-beam gradient-force optical trap for dielectric particles in air. , 1997, Optics letters.

[280]  Thomas C. Preston,et al.  Dynamics of submicron aerosol droplets in a robust optical trap formed by multiple Bessel beams , 2014 .

[281]  Arthur Ashkin,et al.  Optical Levitation by Radiation Pressure , 1971 .

[282]  J. Popp,et al.  Morphology Dependent Resonances in Raman Spectra of Optically Levitated Microparticles: Determination of Radius and Evaporation Rate of Single Glycerol/Water Droplets by means of Internal Mode Assignment† , 1993 .

[283]  W. Patrick Arnott,et al.  Cavity Ring-Down and Cavity-Enhanced Detection Techniques for the Measurement of Aerosol Extinction , 2005 .

[284]  M. Padgett,et al.  Orbital angular momentum: origins, behavior and applications , 2011 .

[285]  J. Maxwell,et al.  On Stresses in Rarified Gases Arising from Inequalities of Temperature , 2022 .

[286]  D. Grier A revolution in optical manipulation , 2003, Nature.

[287]  Qingchuan Zhang,et al.  Manipulation of aerosols revolving in taper-ring optical traps. , 2014, Optics letters.

[288]  Yong-Le Pan,et al.  Photophoretic trapping-Raman spectroscopy for single pollens and fungal spores trapped in air , 2015 .

[289]  M. Ritsch-Marte,et al.  Combined acoustic and optical trapping , 2011, Biomedical optics express.

[290]  C. Esen,et al.  Raman Investigation of Photopolymerization Reactions of Single Optically Levitated Microparticles , 1996 .

[291]  O. Axner,et al.  Design for fully steerable dual-trap optical tweezers. , 1997, Applied optics.

[292]  Johanna L. Miller,et al.  Cavity ring-down spectroscopy measurement of single aerosol particle extinction. II. Extinction of light by an aerosol particle in an optical cavity excited by a cw laser. , 2007, The Journal of chemical physics.

[293]  J. Smith,et al.  A portable pulsed cavity ring-down transmissometer for measurement of the optical extinction of the atmospheric aerosol. , 2001, The Analyst.

[294]  Gérald Roosen,et al.  The TEM ∗ 01 mode laser beam—A powerful tool for optical levitation of various types of spheres , 1978 .

[295]  J. Hodges,et al.  Observation of sudden temperature jumps in optically levitated microdroplets due to morphology-dependent input resonances. , 1995, Applied optics.

[296]  J. B. Paul,et al.  Cavity ringdown laser absorption spectroscopy , 1997 .

[297]  Kishan Dholakia,et al.  Optical micromanipulation. , 2008, Chemical Society reviews.

[298]  Cheng-Wei Qiu,et al.  Linear momentum increase and negative optical forces at dielectric interface , 2013, Nature Photonics.

[299]  W. Kiefer,et al.  Observations of structural resonances in the Raman spectra of optically levitated dielectric microspheres , 1984 .

[300]  Arthur Ashkin,et al.  Optical levitation in high vacuum , 1976 .

[301]  Jun Chen,et al.  Optical pulling force , 2011 .

[302]  A. Ward,et al.  Laser tweezers Raman study of optically trapped aerosol droplets of seawater and oleic acid reacting with ozone: implications for cloud-droplet properties. , 2004, Journal of the American Chemical Society.

[303]  Chuji Wang,et al.  Characterization of single airborne particle extinction using the tunable optical trap-cavity ringdown spectroscopy (OT-CRDS) in the UV. , 2017, Optics express.

[304]  N. Kitamura,et al.  Near-infrared Laser-induced Temperature Elevation in Optically-trapped Aqueous Droplets in Air , 2016, Analytical sciences : the international journal of the Japan Society for Analytical Chemistry.

[305]  D. Mackowski Photophoresis of aerosol particles in the free molecular and slip-flow regimes , 1989 .

[306]  A. Chiou,et al.  Self-aligned dual-beam optical laser trap using photorefractive phase conjugation , 1997 .

[307]  Norman R. Heckenberg,et al.  FDFD/T-matrix hybrid method , 2007 .

[308]  T. Lettieri,et al.  Characterization of single levitated droplets by Raman spectroscopy , 1985 .

[309]  R. A. Beth Mechanical Detection and Measurement of the Angular Momentum of Light , 1936 .