Interactive Bayesian optimization : learning user preferences for graphics and animation

[1]  Alan Fern,et al.  Batch Bayesian Optimization via Simulation Matching , 2010, NIPS.

[2]  Steven Reece,et al.  Sequential Bayesian Prediction in the Presence of Changepoints and Faults , 2010, Comput. J..

[3]  Nando de Freitas,et al.  A Bayesian interactive optimization approach to procedural animation design , 2010, SCA '10.

[4]  John Shawe-Taylor,et al.  Regret Bounds for Gaussian Process Bandit Problems , 2010, AISTATS 2010.

[5]  Roman Garnett,et al.  Active Data Selection for Sensor Networks with Faults and Changepoints , 2010, 2010 24th IEEE International Conference on Advanced Information Networking and Applications.

[6]  Roman Garnett,et al.  Bayesian optimization for sensor set selection , 2010, IPSN '10.

[7]  Andreas Krause,et al.  Information-Theoretic Regret Bounds for Gaussian Process Optimization in the Bandit Setting , 2009, IEEE Transactions on Information Theory.

[8]  Pat Hanrahan,et al.  Exploratory modeling with collaborative design spaces , 2009, ACM Trans. Graph..

[9]  Rémi Munos,et al.  Pure Exploration in Multi-armed Bandits Problems , 2009, ALT.

[10]  Nando de Freitas,et al.  A Bayesian exploration-exploitation approach for optimal online sensing and planning with a visually guided mobile robot , 2009, Auton. Robots.

[11]  Kevin P. Murphy,et al.  An experimental investigation of model-based parameter optimisation: SPO and beyond , 2009, GECCO.

[12]  Daniel Busby,et al.  Hierarchical adaptive experimental design for Gaussian process emulators , 2009, Reliab. Eng. Syst. Saf..

[13]  Nando de Freitas,et al.  New inference strategies for solving Markov Decision Processes using reversible jump MCMC , 2009, UAI.

[14]  Yoav Freund,et al.  A Parameter-free Hedging Algorithm , 2009, NIPS.

[15]  Burr Settles,et al.  Active Learning Literature Survey , 2009 .

[16]  Marcus R. Frean,et al.  Using Gaussian Processes to Optimize Expensive Functions , 2008, Australasian Conference on Artificial Intelligence.

[17]  H. Rue,et al.  Approximate Bayesian Inference in Spatial Generalized Linear Mixed Models , 2008 .

[18]  Andreas Krause,et al.  Near-Optimal Sensor Placements in Gaussian Processes: Theory, Efficient Algorithms and Empirical Studies , 2008, J. Mach. Learn. Res..

[19]  Sarvapali D. Ramchurn,et al.  2008 International Conference on Information Processing in Sensor Networks Towards Real-Time Information Processing of Sensor Network Data using Computationally Efficient Multi-output Gaussian Processes , 2022 .

[20]  D. Lizotte Practical bayesian optimization , 2008 .

[21]  Vlad M. Cora Model-Based Active Learning in Hierarchical Policies , 2008 .

[22]  Trevor Darrell,et al.  Active Learning with Gaussian Processes for Object Categorization , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[23]  Julien Bect,et al.  On the convergence of the expected improvement algorithm , 2007 .

[24]  Nando de Freitas,et al.  Active Preference Learning with Discrete Choice Data , 2007, NIPS.

[25]  Nando de Freitas,et al.  Preference galleries for material design , 2007, SIGGRAPH '07.

[26]  Erik Reinhard,et al.  Do HDR displays support LDR content?: a psychophysical evaluation , 2007, ACM Trans. Graph..

[27]  Nando de Freitas,et al.  Analysis of Particle Methods for Simultaneous Robot Localization and Mapping and a New Algorithm: Marginal-SLAM , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[28]  P. Diggle,et al.  Model‐based geostatistics , 2007 .

[29]  Tao Wang,et al.  Automatic Gait Optimization with Gaussian Process Regression , 2007, IJCAI.

[30]  Phillip Boyle,et al.  Gaussian Processes for Regression and Optimisation , 2007 .

[31]  Tom Minka,et al.  TrueSkillTM: A Bayesian Skill Rating System , 2006, NIPS.

[32]  Geoffrey E. Hinton,et al.  Reducing the Dimensionality of Data with Neural Networks , 2006, Science.

[33]  Frédo Durand,et al.  Image-driven navigation of analytical BRDF models , 2006, EGSR '06.

[34]  N. Zheng,et al.  Global Optimization of Stochastic Black-Box Systems via Sequential Kriging Meta-Models , 2006, J. Glob. Optim..

[35]  C. Holmes,et al.  Bayesian auxiliary variable models for binary and multinomial regression , 2006 .

[36]  Thomas Bartz-Beielstein,et al.  Sequential parameter optimization , 2005, 2005 IEEE Congress on Evolutionary Computation.

[37]  Wei Chu,et al.  Extensions of Gaussian processes for ranking: semi-supervised and active learning , 2005 .

[38]  Wei Chu,et al.  Preference learning with Gaussian processes , 2005, ICML.

[39]  Alan Chalmers,et al.  Evaluation of tone mapping operators using a High Dynamic Range display , 2005, ACM Trans. Graph..

[40]  Ronald Fedkiw,et al.  A vortex particle method for smoke, water and explosions , 2005, ACM Trans. Graph..

[41]  Frédo Durand,et al.  Experimental analysis of BRDF models , 2005, EGSR '05.

[42]  Richard S. Sutton,et al.  Reinforcement Learning: An Introduction , 1998, IEEE Trans. Neural Networks.

[43]  Shane T. Jensen,et al.  Adaptive Paired Comparison Design , 2005 .

[44]  Hiroshi Yamaguchi,et al.  Testing HDR Image Rendering Algorithms , 2004, CIC.

[45]  A. P. Dawid,et al.  Gaussian Processes to Speed up Hybrid Monte Carlo for Expensive Bayesian Integrals , 2003 .

[46]  Thomas J. Santner,et al.  Design and analysis of computer experiments , 1998 .

[47]  Kenneth E. Train,et al.  Discrete Choice Methods with Simulation , 2016 .

[48]  A. Zilinskas,et al.  Global optimization based on a statistical model and simplicial partitioning , 2002 .

[49]  Marc G. Genton,et al.  Classes of Kernels for Machine Learning: A Statistics Perspective , 2002, J. Mach. Learn. Res..

[50]  Donald R. Jones,et al.  A Taxonomy of Global Optimization Methods Based on Response Surfaces , 2001, J. Glob. Optim..

[51]  Trevor Hastie,et al.  The Elements of Statistical Learning , 2001 .

[52]  Roderick Murray-Smith,et al.  Gaussian process priors with ARMA noise models , 2001 .

[53]  Charles Audet,et al.  A surrogate-model-based method for constrained optimization , 2000 .

[54]  J. Hiriart-Urruty,et al.  Comparison of public-domain software for black box global optimization , 2000 .

[55]  Thomas J. Santner,et al.  Sequential design of computer experiments to minimize integrated response functions , 2000 .

[56]  Simon Streltsov,et al.  A Non-myopic Utility Function for Statistical Global Optimization Algorithms , 1999, J. Glob. Optim..

[57]  Donald R. Jones,et al.  Efficient Global Optimization of Expensive Black-Box Functions , 1998, J. Glob. Optim..

[58]  Paul W. Goldberg,et al.  Regression with Input-dependent Noise: A Gaussian Process Treatment , 1997, NIPS.

[59]  Paul A. Beardsley,et al.  Design galleries: a general approach to setting parameters for computer graphics and animation , 1997, SIGGRAPH.

[60]  William J. Welch,et al.  Computer experiments and global optimization , 1997 .

[61]  Marco Locatelli,et al.  Bayesian Algorithms for One-Dimensional Global Optimization , 1997, J. Glob. Optim..

[62]  Harold J. Kushner,et al.  Stochastic Approximation Algorithms and Applications , 1997, Applications of Mathematics.

[63]  Nicolò Cesa-Bianchi,et al.  Gambling in a rigged casino: The adversarial multi-armed bandit problem , 1995, Proceedings of IEEE 36th Annual Foundations of Computer Science.

[64]  William A. Gale,et al.  A sequential algorithm for training text classifiers , 1994, SIGIR '94.

[65]  Jonas Mockus,et al.  Application of Bayesian approach to numerical methods of global and stochastic optimization , 1994, J. Glob. Optim..

[66]  C. D. Perttunen,et al.  Lipschitzian optimization without the Lipschitz constant , 1993 .

[67]  Eric J. Johnson,et al.  The adaptive decision maker , 1993 .

[68]  J. Elder Global R/sup d/ optimization when probes are expensive: the GROPE algorithm , 1992, [Proceedings] 1992 IEEE International Conference on Systems, Man, and Cybernetics.

[69]  D. Dennis,et al.  A statistical method for global optimization , 1992, [Proceedings] 1992 IEEE International Conference on Systems, Man, and Cybernetics.

[70]  A. Tversky,et al.  Advances in prospect theory: Cumulative representation of uncertainty , 1992 .

[71]  David J. C. MacKay,et al.  A Practical Bayesian Framework for Backpropagation Networks , 1992, Neural Computation.

[72]  Jakub Wejchert,et al.  Animation aerodynamics , 1991, SIGGRAPH.

[73]  Bruno Betrò,et al.  Bayesian methods in global optimization , 1991, J. Glob. Optim..

[74]  Karl Sims,et al.  Particle animation and rendering using data parallel computation , 1990, SIGGRAPH.

[75]  J. Mockus,et al.  The Bayesian approach to global optimization , 1989 .

[76]  Aimo A. Törn,et al.  Global Optimization , 1999, Science.

[77]  Bruce E. Stuckman,et al.  A global search method for optimizing nonlinear systems , 1988, IEEE Trans. Syst. Man Cybern..

[78]  S. K. Michael Wong,et al.  Linear structure in information retrieval , 1988, SIGIR '88.

[79]  D. McFadden Econometric Models for Probabilistic Choice Among Products , 1980 .

[80]  H. Simon,et al.  Rationality as Process and as Product of Thought , 1978 .

[81]  A. Tversky,et al.  Prospect Theory. An Analysis of Decision Making Under Risk , 1977 .

[82]  S. Siegel,et al.  Nonparametric Statistics for the Behavioral Sciences , 2022, The SAGE Encyclopedia of Research Design.

[83]  D. Krige A statistical approach to some basic mine valuation problems on the Witwatersrand, by D.G. Krige, published in the Journal, December 1951 : introduction by the author , 1951 .

[84]  F. Mosteller Remarks on the method of paired comparisons: I. The least squares solution assuming equal standard deviations and equal correlations , 1951 .

[85]  Maurice G. Kendall,et al.  Rank Correlation Methods , 1949 .