Parallel Tree Contraction, Part 2: Further Applications

This paper applies the parallel tree contraction techniques developed in Miller and Reif’s paper [Randomness and Computation, Vol. 5, S. Micali, ed., JAI Press, 1989, pp. 47’72] to a number of fundamental graph problems. The paper presents an $O(\log n)$ time and $n / \log n$ processor, a 0-sided randomized algorithm for testing the isomorphism of trees, and an $O(\log n)$ time, n algorithm for maximal subtree isomorphism and for common subexpression elimination. An O(log n) time, n-processor algorithm for computing the canonical forms of trees and subtrees is given. An Olog n time algorithm for computing the tree of 3-connected components of a graph, an $O(\log ^2 n)$ time algorithm for computing an explicit planar embedding of a planar graph, and an $O(\log ^3 n)$ time algorithm for computing a canonical form for a planar graph are also given. All these latter algorithms use only $n^{O(1)} $ processors on a Parallel Random Access Machine (PRAM) model with concurrent writes and concurrent reads.

[1]  E. Wright,et al.  An Introduction to the Theory of Numbers , 1939 .

[2]  Donald E. Knuth,et al.  Analysis of a Simple Factorization Algorithm , 1976, Theor. Comput. Sci..

[3]  Gary L. Miller,et al.  Riemann's Hypothesis and tests for primality , 1975, STOC.

[4]  Gary L. Miller,et al.  An additivity theorem for the genus of a graph , 1987, J. Comb. Theory, Ser. B.

[5]  Philip N. Klein,et al.  An efficient parallel algorithm for planarity , 1986, 27th Annual Symposium on Foundations of Computer Science (sfcs 1986).

[6]  Gary L. Miller,et al.  Finding small simple cycle separators for 2-connected planar graphs. , 1984, STOC '84.

[7]  Donald S. Fussell,et al.  Finding Triconnected Components by Local Replacements , 1989, ICALP.

[8]  Joseph JáJá,et al.  Parallel Algorithms in Graph Theory: Planarity Testing , 1982, SIAM J. Comput..

[9]  Philip N. Klein,et al.  An efficient parallel algorithm for planarity , 1986, 27th Annual Symposium on Foundations of Computer Science (sfcs 1986).

[10]  Gary L. Miller,et al.  Efficient Parallel Evaluation of Straight-Line Code and Arithmetic Circuits , 1988, SIAM J. Comput..

[11]  G. Hardy,et al.  An Introduction To The Theory Of Numbers Fourth Edition , 1968 .

[12]  Ernst W. Mayr,et al.  The Dynamic Tree Expression Problem , 1988 .

[13]  H. Whitney A Set of Topological Invariants for Graphs , 1933 .

[14]  Gary L. Miller,et al.  A parallel algorithm for finding a separator in planar graphs , 1987, 28th Annual Symposium on Foundations of Computer Science (sfcs 1987).

[15]  Uzi Vishkin,et al.  Optimal parallel generation of a computation tree form , 1985, TOPL.

[16]  János Komlós,et al.  An 0(n log n) sorting network , 1983, STOC.

[17]  Donald S. Fussell,et al.  Finding Triconnected Components by Local Replacement , 1993, SIAM J. Comput..

[18]  Uzi Vishkin,et al.  Randomized speed-ups in parallel computation , 2015, STOC '84.

[19]  Leslie G. Valiant,et al.  A logarithmic time sort for linear size networks , 1982, STOC.

[20]  Volker Strassen,et al.  A Fast Monte-Carlo Test for Primality , 1977, SIAM J. Comput..

[21]  Gary L. Miller,et al.  A Simple Randomized Parallel Algorithm for List-Ranking , 1990, Inf. Process. Lett..

[22]  Robert E. Tarjan,et al.  Dividing a Graph into Triconnected Components , 1973, SIAM J. Comput..

[23]  Richard Cole,et al.  Parallel merge sort , 1988, 27th Annual Symposium on Foundations of Computer Science (sfcs 1986).

[24]  Mikhail J. Atallah,et al.  Constructing trees in parallel , 1989, SPAA '89.