Arbitrary-order Hilbert spectral analysis for time series possessing scaling statistics: comparison study with detrended fluctuation analysis and wavelet leaders.

In this paper we present an extended version of Hilbert-Huang transform, namely arbitrary-order Hilbert spectral analysis, to characterize the scale-invariant properties of a time series directly in an amplitude-frequency space. We first show numerically that due to a nonlinear distortion, traditional methods require high-order harmonic components to represent nonlinear processes, except for the Hilbert-based method. This will lead to an artificial energy flux from the low-frequency (large scale) to the high-frequency (small scale) part. Thus the power law, if it exists, is contaminated. We then compare the Hilbert method with structure functions (SF), detrended fluctuation analysis (DFA), and wavelet leader (WL) by analyzing fractional Brownian motion and synthesized multifractal time series. For the former simulation, we find that all methods provide comparable results. For the latter simulation, we perform simulations with an intermittent parameter μ=0.15. We find that the SF underestimates scaling exponent when q>3. The Hilbert method provides a slight underestimation when q>5. However, both DFA and WL overestimate the scaling exponents when q>5. It seems that Hilbert and DFA methods provide better singularity spectra than SF and WL. We finally apply all methods to a passive scalar (temperature) data obtained from a jet experiment with a Taylor's microscale Reynolds number Re(λ)≃250. Due to the presence of strong ramp-cliff structures, the SF fails to detect the power law behavior. For the traditional method, the ramp-cliff structure causes a serious artificial energy flux from the low-frequency (large scale) to the high-frequency (small scale) part. Thus DFA and WL underestimate the scaling exponents. However, the Hilbert method provides scaling exponents ξ(θ)(q) quite close to the one for longitudinal velocity, indicating a less intermittent passive scalar field than what was believed before.

[1]  Antonio Turiel,et al.  Application of the microcanonical multifractal formalism to monofractal systems. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[2]  Antonio Turiel,et al.  Numerical methods for the estimation of multifractal singularity spectra on sampled data: A comparative study , 2006, J. Comput. Phys..

[3]  F. Schmitt,et al.  Multifractal analysis of foreign exchange data , 1999 .

[4]  Imen Kammoun,et al.  Asymptotic Properties of the Detrended Fluctuation Analysis of Long-Range-Dependent Processes , 2008, IEEE Transactions on Information Theory.

[5]  Vergassola,et al.  Universality and saturation of intermittency in passive scalar turbulence , 2000, Physical review letters.

[6]  Alain Arneodo,et al.  Scaling behavior of high resolution temporal rainfall: New insights from a wavelet-based cumulant analysis , 2006 .

[7]  Harvard Medical School,et al.  Effect of nonstationarities on detrended fluctuation analysis. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[8]  Paulo Gonçalves,et al.  Empirical Mode Decompositions as Data-Driven Wavelet-like Expansions , 2004, Int. J. Wavelets Multiresolution Inf. Process..

[9]  F. Schmitt A causal multifractal stochastic equation and its statistical properties , 2003, cond-mat/0305655.

[10]  Shaun Lovejoy,et al.  Multifractal Cascade Dynamics and Turbulent Intermittency , 1997 .

[11]  F. Schmitt,et al.  Scaling invariance of crack surfaces , 1995 .

[12]  Yongxiang Huang,et al.  Analysis of daily river flow fluctuations using Empirical Mode Decomposition and arbitrary order Hilbert spectral analysis , 2009 .

[13]  S. Ciliberto,et al.  Scaling laws and dissipation scale of a passive scalar in fully developed turbulence , 1996 .

[14]  S. S. Shen,et al.  A confidence limit for the empirical mode decomposition and Hilbert spectral analysis , 2003, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[15]  A. Turiel,et al.  Using empirical mode decomposition to correlate paleoclimatic time-series , 2007 .

[16]  S. Corrsin On the Spectrum of Isotropic Temperature Fluctuations in an Isotropic Turbulence , 1951 .

[17]  K. Coughlin,et al.  11-Year solar cycle in the stratosphere extracted by the empirical mode decomposition method , 2004 .

[18]  F. Anselmet,et al.  High-order velocity structure functions in turbulent shear flows , 1984, Journal of Fluid Mechanics.

[19]  S. S. Shen,et al.  Applications of Hilbert–Huang transform to non‐stationary financial time series analysis , 2003 .

[20]  Katepalli R. Sreenivasan,et al.  On local isotropy of passive scalars in turbulent shear flows , 1991, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[21]  P. Abry,et al.  Bootstrap for Empirical Multifractal Analysis , 2007, IEEE Signal Processing Magazine.

[22]  François G. Schmitt,et al.  Linking Eulerian and Lagrangian structure functions’ scaling exponents in turbulence , 2006 .

[23]  W. Water,et al.  High-order structure functions of turbulence , 1999, Journal of Fluid Mechanics.

[24]  Y. X. Huang,et al.  Second-order structure function in fully developed turbulence. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[25]  C. Guedes Soares,et al.  Identification of the components of wave spectra by the Hilbert Huang transform method , 2004 .

[26]  T. Lux Power laws and long memory , 2001 .

[27]  M. Movahed,et al.  Multifractal detrended fluctuation analysis of sunspot time series , 2005, physics/0508149.

[28]  E. Bacry,et al.  Multifractal formalism for fractal signals: The structure-function approach versus the wavelet-transform modulus-maxima method. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[29]  Reinaldo R. Rosa,et al.  Multiscale analysis from turbulent time series with wavelet transform , 2001 .

[30]  Shaun Lovejoy,et al.  Multifractal analysis of the Greenland Ice‐Core Project climate data , 1995 .

[31]  Gabriel Rilling,et al.  Empirical mode decomposition as a filter bank , 2004, IEEE Signal Processing Letters.

[32]  E. Bacry,et al.  Multifractal stationary random measures and multifractal random walks with log infinitely divisible scaling laws. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[33]  J. Kwapień,et al.  Wavelet versus detrended fluctuation analysis of multifractal structures. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[34]  E. Bacry,et al.  Multifractal random walk. , 2000, Physical review. E, Statistical, nonlinear, and soft matter physics.

[35]  D. Lohse,et al.  Small-Scale Properties of Turbulent Rayleigh-Bénard Convection , 2010 .

[36]  C. Peng,et al.  Mosaic organization of DNA nucleotides. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[37]  Z. Warhaft Passive Scalars in Turbulent Flows , 2000 .

[38]  S. Havlin,et al.  Comparison of detrending methods for fluctuation analysis , 2008, 0804.4081.

[39]  Shlomo Havlin,et al.  Long-term persistence and multifractality of river runoff records: Detrended fluctuation studies , 2003 .

[40]  L. Rogers Arbitrage with Fractional Brownian Motion , 1997 .

[41]  D. Menicucci,et al.  Deriving the respiratory sinus arrhythmia from the heartbeat time series using empirical mode decomposition , 2003, q-bio/0310002.

[42]  Norden E. Huang,et al.  A note on analyzing nonlinear and nonstationary ocean wave data , 2003 .

[43]  Laurent E. Calvet,et al.  Multifractality in Asset Returns: Theory and Evidence , 2002, Review of Economics and Statistics.

[44]  Ivanov PCh,et al.  Sleep-wake differences in scaling behavior of the human heartbeat: analysis of terrestrial and long-term space flight data. , 1999, Europhysics letters.

[45]  S. J. Loutridis,et al.  Resonance identification in loudspeaker driver units: A comparison of techniques , 2005 .

[46]  Stéphane Mallat,et al.  Singularity detection and processing with wavelets , 1992, IEEE Trans. Inf. Theory.

[47]  N. Huang,et al.  A new view of nonlinear water waves: the Hilbert spectrum , 1999 .

[48]  She,et al.  Universal scaling laws in fully developed turbulence. , 1994, Physical review letters.

[49]  H. Stanley,et al.  Multifractal Detrended Fluctuation Analysis of Nonstationary Time Series , 2002, physics/0202070.

[50]  Y. X. Huang,et al.  An amplitude-frequency study of turbulent scaling intermittency using Empirical Mode Decomposition and Hilbert Spectral Analysis , 2008, 1401.4211.

[51]  François G. Schmitt,et al.  Modeling of rainfall time series using two-state renewal processes and multifractals , 1998 .

[52]  Md. Khademul Islam Molla,et al.  Empirical mode decomposition analysis of climate changes with special reference to rainfall data , 2006 .

[53]  G. McDarby,et al.  Establishing the relation between detrended fluctuation analysis and power spectral density analysis for stochastic processes , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[54]  J. Peinke,et al.  Turbulent cascades in foreign exchange markets , 1996, Nature.

[55]  I. Jánosi,et al.  Empirical mode decomposition and correlation properties of long daily ozone records. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[56]  M. Farge Wavelet Transforms and their Applications to Turbulence , 1992 .

[57]  N. Huang,et al.  The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis , 1998, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[58]  Chong-yu Xu,et al.  Multifractal detrended fluctuation analysis of streamflow series of the Yangtze River basin, China , 2008 .

[59]  M. S. Woolfson,et al.  Application of empirical mode decomposition to heart rate variability analysis , 2001, Medical and Biological Engineering and Computing.

[60]  François G. Schmitt,et al.  Analysis of velocity fluctuations and their intermittency properties in the surf zone using empirical mode decomposition , 2009 .

[61]  Sandro Vaienti,et al.  On the wavelet analysis for multifractal sets , 1989 .

[62]  E. Bacry,et al.  Wavelets and multifractal formalism for singular signals: Application to turbulence data. , 1991, Physical review letters.

[63]  Gabriel Rilling,et al.  Sampling Effects on the Empirical Mode Decomposition , 2009, Adv. Data Sci. Adapt. Anal..

[64]  A. Arneodo,et al.  WAVELET BASED MULTIFRACTAL ANALYSIS OF ROUGH SURFACES : APPLICATION TO CLOUD MODELS AND SATELLITE DATA , 1997 .

[65]  Patrice Abry,et al.  Comprehensive multifractal analysis of turbulent velocity using the wavelet leaders , 2008 .

[66]  Ruichong Zhang,et al.  Modal parameter identification of Tsing Ma suspension bridge under Typhoon Victor : EMD-HT method , 2004 .

[67]  H. Stanley,et al.  Effect of trends on detrended fluctuation analysis. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[68]  E. Serrano,et al.  Wavelet Leaders: A new method to estimate the multifractal singularity spectra , 2009 .

[69]  D. Schertzer,et al.  Physical modeling and analysis of rain and clouds by anisotropic scaling multiplicative processes , 1987 .

[70]  Fabien Anselmet,et al.  Temperature structure functions in turbulent shear flows , 1984 .

[71]  Zhaohua Wu,et al.  On the trend, detrending, and variability of nonlinear and nonstationary time series , 2007, Proceedings of the National Academy of Sciences.

[72]  Johan Grasman,et al.  Multifractal analysis of 15-min and daily rainfall from a semi-arid region in Portugal , 1999 .

[73]  Yongxiang Huang,et al.  Analyse de l’invariance d’échelle de séries temporelles par la décomposition modale empirique et l’analyse spectrale de Hilbert , 2008 .