Substitutive systems and a finitary version of Cobham's theorem

We study substitutive systems generated by nonprimitive substitutions and show that transitive subsystems of substitutive systems are substitutive. As an application we obtain a complete characterisation of the sets of words that can appear as common factors of two automatic sequences defined over multiplicatively independent bases. This generalises the famous theorem of Cobham.

[1]  Isabelle Fagnot,et al.  Sur les facteurs des mots automatiques , 1997, Theor. Comput. Sci..

[2]  M. Singer,et al.  Mahler equations and rationality , 2016, 1605.08830.

[3]  Kiran S. Kedlaya Finite automata and algebraic extensions of function fields , 2004 .

[4]  Alan Cobham,et al.  On the base-dependence of sets of numbers recognizable by finite automata , 1969, Mathematical systems theory.

[5]  Robert Ellis,et al.  Distal transformation groups. , 1958 .

[6]  K. Mahler Zur Approximation algebraischer Zahlen. I , 1933 .

[7]  Gregory R. Maloney,et al.  Beyond primitivity for one-dimensional substitution subshifts and tiling spaces , 2016, Ergodic Theory and Dynamical Systems.

[8]  S. Bezuglyi,et al.  Aperiodic substitution systems and their Bratteli diagrams , 2007, Ergodic Theory and Dynamical Systems.

[9]  Jakub Byszewski,et al.  A density version of Cobham's theorem , 2017, Acta Arithmetica.

[10]  Juha Honkala A Decision Method for The Recognizability of Sets Defined by Number Systems , 1986, RAIRO Theor. Informatics Appl..

[11]  Boris Adamczewski,et al.  Function fields in positive characteristic: Expansions and Cobham's theorem , 2008 .

[12]  Bernard Boigelot,et al.  A Generalization of Cobham's Theorem to Automata over Real Numbers , 2007, ICALP.

[13]  Michel Rigo,et al.  On Cobham's theorem , 2011, Handbook of Automata Theory.

[14]  Isabelle Fagnot,et al.  On factors of automatic words , 1997 .

[15]  Gilles Christol,et al.  Ensembles Presque Periodiques k-Reconnaissables , 1979, Theor. Comput. Sci..

[16]  M. Lothaire Applied Combinatorics on Words (Encyclopedia of Mathematics and its Applications) , 2005 .

[17]  Bernard Boigelot,et al.  A generalization of Cobham's theorem to automata over real numbers , 2009, Theor. Comput. Sci..

[18]  James D. Currie,et al.  Extremal words in morphic subshifts , 2014, Discret. Math..

[19]  Karel Klouda,et al.  An algorithm for enumerating all infinite repetitions in a D0L-system , 2015, J. Discrete Algorithms.

[20]  Boris Adamczewski,et al.  An analogue of Cobham’s theorem for fractals , 2011 .

[21]  J. Evertse,et al.  Unit Equations in Diophantine Number Theory , 2015 .

[22]  Jason P. Bell Séminaire Lotharingien de Combinatoire 54A (2006), Article B54Ap A GENERALIZATION OF COBHAM’S THEOREM FOR REGULAR SEQUENCES , 2022 .

[23]  Self-similar and self-affine sets: measure of the intersection of two copies , 2007, Ergodic Theory and Dynamical Systems.

[24]  M. Queffélec Substitution dynamical systems, spectral analysis , 1987 .

[25]  J. Bell,et al.  A PROBLEM ABOUT MAHLER FUNCTIONS , 2013 .

[26]  Bernard Boigelot,et al.  A Generalization of Semenov's Theorem to Automata over Real Numbers , 2009, CADE.

[27]  C. Michaux,et al.  LOGIC AND p-RECOGNIZABLE SETS OF INTEGERS , 1994 .

[28]  Jeffrey Shallit,et al.  Periodicity, repetitions, and orbits of an automatic sequence , 2008, Theor. Comput. Sci..

[29]  REEM YASSAWI,et al.  Recognizability for sequences of morphisms , 2017, Ergodic Theory and Dynamical Systems.

[30]  Jeffrey Shallit,et al.  Cobham's Theorem and Automaticity , 2018, Int. J. Found. Comput. Sci..

[31]  M. Einsiedler,et al.  Ergodic Theory: with a view towards Number Theory , 2010 .

[32]  Fabien Durand,et al.  Cobham's theorem for substitutions , 2010, ArXiv.

[33]  J. Bell,et al.  A problem around Mahler functions , 2013, 1303.2019.

[34]  S. Lang,et al.  Integral points on curves , 1960 .

[35]  Yang Wang,et al.  On the structures of generating iterated function systems of Cantor sets , 2009 .

[36]  Emilie Charlier,et al.  An analogue of Cobham's theorem for graph directed iterated function systems , 2013, 1310.0309.