Tautness and complete hyperbolicity of domains in ℂⁿ

We prove that the existence of a local peak holomorphic function at each boundary point of an unbounded domain and at infinity implies the complete hyperbolicity of this domain, and we give a link between local tautness and global tautness of a domain. We end the note with some examples of taut and complete hyperbolic domains arising from the study of domains with noncompact automorphisms group.

[1]  S. Pinchuk,et al.  ON BOUNDARY RIGIDITY AND REGULARITY OF HOLOMORPHIC MAPPINGS , 1996 .

[2]  E. Bedford,et al.  CONVEX DOMAINS WITH NONCOMPACT AUTOMORPHISM GROUPS , 1995 .

[3]  J. Yu Weighted boundary limits of the generalized Kobayashi-Royden metrics on weakly pseudoconvex domains , 1995 .

[4]  F. Berteloot CHARACTERIZATION OF MODELS IN C2 BY THEIR AUTOMORPHISM GROUPS , 1994 .

[5]  Sanghyun Cho A lower bound on the Kobayashi metric near a point of finite type in ℂn , 1992 .

[6]  E. Bedford,et al.  DOMAINS IN $ \mathbf{C}^2$ WITH NONCOMPACT HOLOMORPHIC AUTOMORPHISM GROUPS , 1989 .

[7]  Donato Pertici CR-struttura E geometria riemanniana delle ipersuperficie di ℂn , 1984 .

[8]  Norberto Kerzman,et al.  Fonctions plurisouscharmoniques d'exhaustion bornées et domaines taut , 1981 .

[9]  J. Fornæss,et al.  A Construction of Peak Functions on Weakly Pseudoconvex Domains , 1978 .

[10]  B. Wong Characterization of the unit ball in ℂn by its automorphism group , 1977 .

[11]  Shôshichi Kobayashi Intrinsic distances, measures and geometric function theory , 1976 .

[12]  H. Wu Normal families of holomorphic mappings , 1967 .

[13]  Hervé Gaussier Caractérisation de domaines et d'hypersurfaces convexes , 1996 .

[14]  K. Diederich,et al.  Pseudoconvex domains of semiregular type , 1994 .

[15]  R. Greene,et al.  Characterizations of certain weakly pseudoconvex domains with non-compact automorphism groups , 1987 .

[16]  J. D'Angelo Finite type conditions for real hypersurfaces , 1979 .

[17]  Jean-Pierre Rosay Sur une caractérisation de la boule parmi les domaines de ${\mathbb {C}}^n$ par son groupe d’automorphismes , 1979 .

[18]  H. Royden Remarks on the Kobayashi metric , 1971 .